3.54.84 \(\int \frac {e^{\frac {2-10 x-x^2-\log (x)}{x}} (-12-4 x-4 x^2+4 \log (x))}{x^3} \, dx\)

Optimal. Leaf size=31 \[ \frac {4 e^{-9+\frac {2}{x}-x-\frac {x+\log (x)}{x}}-x}{x} \]

________________________________________________________________________________________

Rubi [B]  time = 0.10, antiderivative size = 69, normalized size of antiderivative = 2.23, number of steps used = 1, number of rules used = 1, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {2288} \begin {gather*} \frac {4 e^{\frac {-x^2-10 x+2}{x}} x^{-\frac {1}{x}-3} \left (x^2-\log (x)+3\right )}{\frac {-x^2-10 x-\log (x)+2}{x^2}+\frac {2 x+\frac {1}{x}+10}{x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((2 - 10*x - x^2 - Log[x])/x)*(-12 - 4*x - 4*x^2 + 4*Log[x]))/x^3,x]

[Out]

(4*E^((2 - 10*x - x^2)/x)*x^(-3 - x^(-1))*(3 + x^2 - Log[x]))/((10 + x^(-1) + 2*x)/x + (2 - 10*x - x^2 - Log[x
])/x^2)

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 e^{\frac {2-10 x-x^2}{x}} x^{-3-\frac {1}{x}} \left (3+x^2-\log (x)\right )}{\frac {10+\frac {1}{x}+2 x}{x}+\frac {2-10 x-x^2-\log (x)}{x^2}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 23, normalized size = 0.74 \begin {gather*} 4 e^{-10+\frac {2}{x}-x} x^{-1-\frac {1}{x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((2 - 10*x - x^2 - Log[x])/x)*(-12 - 4*x - 4*x^2 + 4*Log[x]))/x^3,x]

[Out]

4*E^(-10 + 2/x - x)*x^(-1 - x^(-1))

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 21, normalized size = 0.68 \begin {gather*} \frac {4 \, e^{\left (-\frac {x^{2} + 10 \, x + \log \relax (x) - 2}{x}\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*log(x)-4*x^2-4*x-12)*exp((-log(x)-x^2-10*x+2)/x)/x^3,x, algorithm="fricas")

[Out]

4*e^(-(x^2 + 10*x + log(x) - 2)/x)/x

________________________________________________________________________________________

giac [A]  time = 0.16, size = 21, normalized size = 0.68 \begin {gather*} \frac {4 \, e^{\left (-\frac {x^{2} + 10 \, x + \log \relax (x) - 2}{x}\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*log(x)-4*x^2-4*x-12)*exp((-log(x)-x^2-10*x+2)/x)/x^3,x, algorithm="giac")

[Out]

4*e^(-(x^2 + 10*x + log(x) - 2)/x)/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 22, normalized size = 0.71




method result size



risch \(\frac {4 \,{\mathrm e}^{-\frac {x^{2}+\ln \relax (x )+10 x -2}{x}}}{x}\) \(22\)
norman \(\frac {4 \,{\mathrm e}^{\frac {-\ln \relax (x )-x^{2}-10 x +2}{x}}}{x}\) \(25\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*ln(x)-4*x^2-4*x-12)*exp((-ln(x)-x^2-10*x+2)/x)/x^3,x,method=_RETURNVERBOSE)

[Out]

4/x*exp(-(x^2+ln(x)+10*x-2)/x)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 23, normalized size = 0.74 \begin {gather*} \frac {4 \, e^{\left (-x - \frac {\log \relax (x)}{x} + \frac {2}{x} - 10\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*log(x)-4*x^2-4*x-12)*exp((-log(x)-x^2-10*x+2)/x)/x^3,x, algorithm="maxima")

[Out]

4*e^(-x - log(x)/x + 2/x - 10)/x

________________________________________________________________________________________

mupad [B]  time = 3.54, size = 23, normalized size = 0.74 \begin {gather*} \frac {4\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-10}\,{\mathrm {e}}^{2/x}}{x^{\frac {1}{x}+1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(10*x + log(x) + x^2 - 2)/x)*(4*x - 4*log(x) + 4*x^2 + 12))/x^3,x)

[Out]

(4*exp(-x)*exp(-10)*exp(2/x))/x^(1/x + 1)

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 17, normalized size = 0.55 \begin {gather*} \frac {4 e^{\frac {- x^{2} - 10 x - \log {\relax (x )} + 2}{x}}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*ln(x)-4*x**2-4*x-12)*exp((-ln(x)-x**2-10*x+2)/x)/x**3,x)

[Out]

4*exp((-x**2 - 10*x - log(x) + 2)/x)/x

________________________________________________________________________________________