Optimal. Leaf size=25 \[ e^{1+\frac {1}{3} e^{-3+x-2 (5+x)}-x}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{3} \left (-3 x+e^{-x-13}+3\right )}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-3+e^{\frac {1}{3} \left (3+e^{-13-x}-3 x\right )} \left (-3-e^{-13-x}\right )\right ) \, dx\\ &=-x+\frac {1}{3} \int e^{\frac {1}{3} \left (3+e^{-13-x}-3 x\right )} \left (-3-e^{-13-x}\right ) \, dx\\ &=e^{\frac {1}{3} \left (3+e^{-13-x}-3 x\right )}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 22, normalized size = 0.88 \begin {gather*} e^{1+\frac {e^{-13-x}}{3}-x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 18, normalized size = 0.72 \begin {gather*} -x + e^{\left (-x + \frac {1}{3} \, e^{\left (-x - 13\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 18, normalized size = 0.72 \begin {gather*} -x + e^{\left (-x + \frac {1}{3} \, e^{\left (-x - 13\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.76
method | result | size |
norman | \({\mathrm e}^{\frac {{\mathrm e}^{-x -13}}{3}-x +1}-x\) | \(19\) |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{-x -13}}{3}-x +1}-x\) | \(19\) |
default | \(-x +3 \,{\mathrm e} \,{\mathrm e}^{\frac {{\mathrm e}^{-13} {\mathrm e}^{-x}}{3}} {\mathrm e}^{13}+3 \,{\mathrm e} \,{\mathrm e}^{13} \left (\frac {{\mathrm e}^{-x} {\mathrm e}^{-13} {\mathrm e}^{\frac {{\mathrm e}^{-13} {\mathrm e}^{-x}}{3}}}{3}-{\mathrm e}^{\frac {{\mathrm e}^{-13} {\mathrm e}^{-x}}{3}}\right )\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.72 \begin {gather*} -x + e^{\left (-x + \frac {1}{3} \, e^{\left (-x - 13\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 20, normalized size = 0.80 \begin {gather*} {\mathrm {e}}^{-x}\,\mathrm {e}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-13}}{3}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.56 \begin {gather*} - x + e^{- x + \frac {e^{- x - 13}}{3} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________