Optimal. Leaf size=28 \[ 4+e^{-2 e^{\frac {x^2+\log (x)}{4 \log (2)}}} x^2 \log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 42, normalized size of antiderivative = 1.50, number of steps used = 2, number of rules used = 2, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {12, 2288} \begin {gather*} \frac {\left (2 x^3+x\right ) \log (4) e^{-2 e^{\frac {x^2}{4 \log (2)}} x^{\frac {1}{\log (16)}}}}{2 x+\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-2 e^{\frac {x^2+\log (x)}{4 \log (2)}}} \left (e^{\frac {x^2+\log (x)}{4 \log (2)}} \left (-x-2 x^3\right ) \log (4)+4 x \log (2) \log (4)\right ) \, dx}{2 \log (2)}\\ &=\frac {e^{-2 e^{\frac {x^2}{4 \log (2)}} x^{\frac {1}{\log (16)}}} \left (x+2 x^3\right ) \log (4)}{\frac {1}{x}+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 0.93 \begin {gather*} e^{-2 e^{\frac {x^2}{\log (16)}} x^{\frac {1}{\log (16)}}} x^2 \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 23, normalized size = 0.82 \begin {gather*} 2 \, x^{2} e^{\left (-2 \, e^{\left (\frac {x^{2} + \log \relax (x)}{4 \, \log \relax (2)}\right )}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (2 \, x^{3} + x\right )} e^{\left (\frac {x^{2} + \log \relax (x)}{4 \, \log \relax (2)}\right )} \log \relax (2) - 4 \, x \log \relax (2)^{2}\right )} e^{\left (-2 \, e^{\left (\frac {x^{2} + \log \relax (x)}{4 \, \log \relax (2)}\right )}\right )}}{\log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 0.86
method | result | size |
risch | \(2 x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{\frac {\ln \relax (x )+x^{2}}{4 \ln \relax (2)}}} \ln \relax (2)\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 29, normalized size = 1.04 \begin {gather*} 2 \, x^{2} e^{\left (-2 \, e^{\left (\frac {x^{2}}{4 \, \log \relax (2)} + \frac {\log \relax (x)}{4 \, \log \relax (2)}\right )}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 28, normalized size = 1.00 \begin {gather*} 2\,x^2\,{\mathrm {e}}^{-2\,x^{\frac {1}{4\,\ln \relax (2)}}\,{\mathrm {e}}^{\frac {x^2}{4\,\ln \relax (2)}}}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.01, size = 26, normalized size = 0.93 \begin {gather*} 2 x^{2} e^{- 2 e^{\frac {\frac {x^{2}}{4} + \frac {\log {\relax (x )}}{4}}{\log {\relax (2 )}}}} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________