Optimal. Leaf size=24 \[ \frac {e^{-3+x} x}{i \pi +x+\log (3)-5 \log ^2(3)} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 45, normalized size of antiderivative = 1.88, number of steps used = 9, number of rules used = 7, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {6, 1586, 27, 2199, 2194, 2177, 2178} \begin {gather*} e^{x-3}-\frac {e^{x-3} (\log (3) (1-\log (243))+i \pi )}{x+i \pi -5 \log ^2(3)+\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 1586
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-3+x} x \left (x^2+(-5-5 x) \log ^2(3)+(1+x) (i \pi +\log (3))\right )}{x^3+2 x^2 (i \pi +\log (3))+\log ^2(3) \left (-10 x^2-10 x (i \pi +\log (3))\right )+x \left (25 \log ^4(3)+(i \pi +\log (3))^2\right )} \, dx\\ &=\int \frac {e^{-3+x} \left (x^2+(-5-5 x) \log ^2(3)+(1+x) (i \pi +\log (3))\right )}{-\pi ^2+x^2+2 i \pi \log (3)+\log ^2(3)-10 i \pi \log ^2(3)-10 \log ^3(3)+25 \log ^4(3)+x \left (2 i \pi +2 \log (3)-10 \log ^2(3)\right )} \, dx\\ &=\int \frac {e^{-3+x} \left (x^2+(-5-5 x) \log ^2(3)+(1+x) (i \pi +\log (3))\right )}{\left (x+i \left (\pi -i \log (3)+5 i \log ^2(3)\right )\right )^2} \, dx\\ &=\int \left (e^{-3+x}+\frac {i e^{-3+x} (\pi -i \log (3) (1-\log (243)))}{\left (i \pi +x+\log (3)-5 \log ^2(3)\right )^2}+\frac {e^{-3+x} (-i \pi -\log (3)+\log (3) \log (243))}{i \pi +x+\log (3)-5 \log ^2(3)}\right ) \, dx\\ &=(-i \pi -\log (3) (1-\log (243))) \int \frac {e^{-3+x}}{i \pi +x+\log (3)-5 \log ^2(3)} \, dx+(i \pi +\log (3)-\log (3) \log (243)) \int \frac {e^{-3+x}}{\left (i \pi +x+\log (3)-5 \log ^2(3)\right )^2} \, dx+\int e^{-3+x} \, dx\\ &=e^{-3+x}+\frac {1}{3} e^{-3+5 \log ^2(3)} \text {Ei}\left (i \pi +x+\log (3)-5 \log ^2(3)\right ) (i \pi +\log (3) (1-\log (243)))-\frac {e^{-3+x} (i \pi +\log (3) (1-\log (243)))}{i \pi +x+\log (3)-5 \log ^2(3)}+(i \pi +\log (3)-\log (3) \log (243)) \int \frac {e^{-3+x}}{i \pi +x+\log (3)-5 \log ^2(3)} \, dx\\ &=e^{-3+x}+\frac {1}{3} e^{-3+5 \log ^2(3)} \text {Ei}\left (i \pi +x+\log (3)-5 \log ^2(3)\right ) (i \pi +\log (3) (1-\log (243)))-\frac {e^{-3+x} (i \pi +\log (3) (1-\log (243)))}{i \pi +x+\log (3)-5 \log ^2(3)}-\frac {1}{3} e^{-3+5 \log ^2(3)} \text {Ei}\left (i \pi +x+\log (3)-5 \log ^2(3)\right ) (i \pi +\log (3)-\log (3) \log (243))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 39, normalized size = 1.62 \begin {gather*} \frac {e^{-3+x} x (i \pi +x+\log (3)-\log (3) \log (243))}{\left (i \pi +x+\log (3)-5 \log ^2(3)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 27, normalized size = 1.12 \begin {gather*} -\frac {e^{\left (x + \log \relax (x) - 3\right )}}{-i \, \pi + 5 \, \log \relax (3)^{2} - x - \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 31, normalized size = 1.29 \begin {gather*} -\frac {i \, x e^{x}}{5 i \, e^{3} \log \relax (3)^{2} + \pi e^{3} - i \, x e^{3} - i \, e^{3} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.61, size = 29, normalized size = 1.21
method | result | size |
risch | \(-\frac {i x \,{\mathrm e}^{x -3}}{\pi +5 i \ln \relax (3)^{2}-i \ln \relax (3)-i x}\) | \(29\) |
norman | \(\frac {x \,{\mathrm e}^{\ln \relax (x )-3+x}+\left (-5 \ln \relax (3)^{2}+\ln \relax (3)-i \pi \right ) {\mathrm e}^{\ln \relax (x )-3+x}}{25 \ln \relax (3)^{4}-10 \ln \relax (3)^{3}-10 x \ln \relax (3)^{2}+\pi ^{2}+\ln \relax (3)^{2}+2 x \ln \relax (3)+x^{2}}\) | \(68\) |
gosper | \(-\frac {\left (\pi +5 i \ln \relax (3)^{2}-i \ln \relax (3)-i x \right ) \left (i x \pi -5 x \ln \relax (3)^{2}+i \pi -5 \ln \relax (3)^{2}+x \ln \relax (3)+x^{2}+\ln \relax (3)\right ) {\mathrm e}^{\ln \relax (x )-3+x}}{\left (\pi x +5 i \ln \relax (3)^{2} x +\pi +5 i \ln \relax (3)^{2}-i x \ln \relax (3)-i x^{2}-i \ln \relax (3)\right ) \left (10 i \pi \ln \relax (3)^{2}-25 \ln \relax (3)^{4}-2 i \pi \ln \relax (3)-2 i x \pi +10 \ln \relax (3)^{3}+10 x \ln \relax (3)^{2}+\pi ^{2}-\ln \relax (3)^{2}-2 x \ln \relax (3)-x^{2}\right )}\) | \(158\) |
default | \(-\frac {30 i {\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi \ln \relax (3)^{3}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}+\frac {75 i {\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi \ln \relax (3)^{4}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}+\frac {10 i {\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi \ln \relax (3)^{2}}{-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi }+\frac {3 i {\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi \ln \relax (3)^{2}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}-\frac {2 i {\mathrm e}^{x -3} \pi \ln \relax (3)}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right ) \left (\ln \relax (3)+i \pi -5 \ln \relax (3)^{2}+x \right )}-\frac {2 i {\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi \ln \relax (3)}{-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi }+\frac {10 i {\mathrm e}^{x -3} \pi \ln \relax (3)^{2}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right ) \left (\ln \relax (3)+i \pi -5 \ln \relax (3)^{2}+x \right )}-\frac {125 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{6}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}+\frac {75 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{5}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}-\frac {15 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{4}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}+\frac {{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{3}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}+\frac {{\mathrm e}^{x -3} \pi ^{2}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right ) \left (\ln \relax (3)+i \pi -5 \ln \relax (3)^{2}+x \right )}-\frac {{\mathrm e}^{x -3} \ln \relax (3)^{2}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right ) \left (\ln \relax (3)+i \pi -5 \ln \relax (3)^{2}+x \right )}-\frac {25 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{4}}{-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi }+\frac {10 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{3}}{-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi }+\frac {{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi ^{2}}{-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi }-\frac {{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{2}}{-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi }-\frac {25 \,{\mathrm e}^{x -3} \ln \relax (3)^{4}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right ) \left (\ln \relax (3)+i \pi -5 \ln \relax (3)^{2}+x \right )}+\frac {10 \,{\mathrm e}^{x -3} \ln \relax (3)^{3}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right ) \left (\ln \relax (3)+i \pi -5 \ln \relax (3)^{2}+x \right )}+{\mathrm e}^{x -3}-\frac {i {\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \pi ^{3}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}+\frac {15 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3)^{2} \pi ^{2}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}-\frac {3 \,{\mathrm e}^{i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )} \expIntegralEi \left (1, -x +3+i \left (-5 i \ln \relax (3)^{2}+i \ln \relax (3)-\pi +3 i\right )\right ) \ln \relax (3) \pi ^{2}}{\left (-5 \ln \relax (3)^{2}+\ln \relax (3)+i \pi \right )^{2}}\) | \(1397\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 26, normalized size = 1.08 \begin {gather*} \frac {x e^{x}}{{\left (i \, \pi - 5 \, \log \relax (3)^{2} + \log \relax (3)\right )} e^{3} + x e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{x+\ln \relax (x)-3}\,\left (x^2+\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )\,\left (x+1\right )-{\ln \relax (3)}^2\,\left (5\,x+5\right )\right )}{25\,x\,{\ln \relax (3)}^4-{\ln \relax (3)}^2\,\left (10\,x\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )+10\,x^2\right )+x\,{\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )}^2+2\,x^2\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )+x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 34, normalized size = 1.42 \begin {gather*} - \frac {x e^{x}}{- x e^{3} - e^{3} \log {\relax (3 )} + 5 e^{3} \log {\relax (3 )}^{2} - i \pi e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________