Optimal. Leaf size=25 \[ -3+x+\frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 7.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (20 x^2-4 x^4\right ) \log \left (5-x^2\right )+\left (-10 x^3+2 x^5\right ) \log \left (5-x^2\right ) \log \left (\log \left (5-x^2\right )\right )+\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (2 x^3+\left (-20+4 x^2\right ) \log \left (5-x^2\right )+\left (5 x-x^3\right ) \log \left (5-x^2\right ) \log \left (\log \left (5-x^2\right )\right )\right )}{\left (20 x^2-4 x^4\right ) \log \left (5-x^2\right )+\left (-10 x^3+2 x^5\right ) \log \left (5-x^2\right ) \log \left (\log \left (5-x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^2-4 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}-\frac {2 x^3 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (-5+x^2\right ) \log \left (5-x^2\right )}-\log \left (\log \left (5-x^2\right )\right ) \left (2 x^3-x \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}\right )}{2 x^2 \left (2-x \log \left (\log \left (5-x^2\right )\right )\right )} \, dx\\ &=\frac {1}{2} \int \frac {4 x^2-4 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}-\frac {2 x^3 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (-5+x^2\right ) \log \left (5-x^2\right )}-\log \left (\log \left (5-x^2\right )\right ) \left (2 x^3-x \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}\right )}{x^2 \left (2-x \log \left (\log \left (5-x^2\right )\right )\right )} \, dx\\ &=\frac {1}{2} \int \left (2-\frac {2 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x^2}-\frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{2 x}+\frac {4 \log \left (\log \left (5-x^2\right )\right )}{\log \left (5-x^2\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}+\frac {2 \log ^2\left (\log \left (5-x^2\right )\right )}{\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}-\frac {5 \log ^4\left (\log \left (5-x^2\right )\right )}{2 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}+\frac {4 x \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (-5+x^2\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}+\frac {10 \log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (-5+x^2\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}\right ) \, dx\\ &=x-\frac {1}{4} \int \frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x} \, dx-\frac {5}{4} \int \frac {\log ^4\left (\log \left (5-x^2\right )\right )}{\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx+2 \int \frac {\log \left (\log \left (5-x^2\right )\right )}{\log \left (5-x^2\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx+2 \int \frac {x \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (-5+x^2\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx+5 \int \frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (-5+x^2\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx-\int \frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x^2} \, dx+\int \frac {\log ^2\left (\log \left (5-x^2\right )\right )}{\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx\\ &=x-\frac {1}{4} \int \frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x} \, dx-\frac {5}{4} \int \left (\frac {4}{25 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}+\frac {\log ^2\left (\log \left (5-x^2\right )\right )}{5 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}+\frac {16}{25 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}\right ) \, dx+2 \int \frac {\log \left (\log \left (5-x^2\right )\right )}{\log \left (5-x^2\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx+2 \int \left (-\frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{2 \left (\sqrt {5}-x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}+\frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{2 \left (\sqrt {5}+x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}\right ) \, dx+5 \int \left (-\frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{2 \sqrt {5} \left (\sqrt {5}-x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}-\frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{2 \sqrt {5} \left (\sqrt {5}+x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}\right ) \, dx-\int \frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x^2} \, dx+\int \left (\frac {1}{5 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}+\frac {4}{5 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )}\right ) \, dx\\ &=x-\frac {1}{4} \int \frac {\log ^2\left (\log \left (5-x^2\right )\right )}{\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}} \, dx-\frac {1}{4} \int \frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x} \, dx+2 \int \frac {\log \left (\log \left (5-x^2\right )\right )}{\log \left (5-x^2\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )} \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx-\frac {1}{2} \sqrt {5} \int \frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (\sqrt {5}-x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx-\frac {1}{2} \sqrt {5} \int \frac {\log \left (\log \left (5-x^2\right )\right ) \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (\sqrt {5}+x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx-\int \frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x^2} \, dx-\int \frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (\sqrt {5}-x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx+\int \frac {\sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{\left (\sqrt {5}+x\right ) \log \left (5-x^2\right ) \left (-4+5 \log ^2\left (\log \left (5-x^2\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 31, normalized size = 1.24 \begin {gather*} \frac {1}{2} \left (2 x+\frac {2 \sqrt {2-x \log \left (\log \left (5-x^2\right )\right )}}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{5} - 5 \, x^{3}\right )} \log \left (-x^{2} + 5\right ) \log \left (\log \left (-x^{2} + 5\right )\right ) - 4 \, {\left (x^{4} - 5 \, x^{2}\right )} \log \left (-x^{2} + 5\right ) + {\left (2 \, x^{3} - {\left (x^{3} - 5 \, x\right )} \log \left (-x^{2} + 5\right ) \log \left (\log \left (-x^{2} + 5\right )\right ) + 4 \, {\left (x^{2} - 5\right )} \log \left (-x^{2} + 5\right )\right )} \sqrt {-x \log \left (\log \left (-x^{2} + 5\right )\right ) + 2}}{2 \, {\left ({\left (x^{5} - 5 \, x^{3}\right )} \log \left (-x^{2} + 5\right ) \log \left (\log \left (-x^{2} + 5\right )\right ) - 2 \, {\left (x^{4} - 5 \, x^{2}\right )} \log \left (-x^{2} + 5\right )\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-x^{3}+5 x \right ) \ln \left (-x^{2}+5\right ) \ln \left (\ln \left (-x^{2}+5\right )\right )+\left (4 x^{2}-20\right ) \ln \left (-x^{2}+5\right )+2 x^{3}\right ) \sqrt {-x \ln \left (\ln \left (-x^{2}+5\right )\right )+2}+\left (2 x^{5}-10 x^{3}\right ) \ln \left (-x^{2}+5\right ) \ln \left (\ln \left (-x^{2}+5\right )\right )+\left (-4 x^{4}+20 x^{2}\right ) \ln \left (-x^{2}+5\right )}{\left (2 x^{5}-10 x^{3}\right ) \ln \left (-x^{2}+5\right ) \ln \left (\ln \left (-x^{2}+5\right )\right )+\left (-4 x^{4}+20 x^{2}\right ) \ln \left (-x^{2}+5\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 24, normalized size = 0.96 \begin {gather*} \frac {x^{2} + \sqrt {-x \log \left (\log \left (-x^{2} + 5\right )\right ) + 2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.44, size = 22, normalized size = 0.88 \begin {gather*} x+\frac {\sqrt {2-x\,\ln \left (\ln \left (5-x^2\right )\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________