Optimal. Leaf size=31 \[ \frac {-4+x-x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25+150 x-25 x^2+e^{2 e^{-4+x}+2 x} \left (9-4 x+2 x^2+e^{-4+x} \left (8-2 x+2 x^2\right )\right )}{625+e^{4 e^{-4+x}+4 x}+1250 x^2+625 x^4+e^{2 e^{-4+x}+2 x} \left (50+50 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25+150 x-25 x^2+e^{2 e^{-4+x}+2 x} \left (9-4 x+2 x^2+e^{-4+x} \left (8-2 x+2 x^2\right )\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx\\ &=\int \left (-\frac {50 \left (4-x+x^2\right ) \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{e^4 \left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {9 e^4+8 e^x-4 e^4 x-2 e^x x+2 e^4 x^2+2 e^x x^2}{e^4 \left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {9 e^4+8 e^x-4 e^4 x-2 e^x x+2 e^4 x^2+2 e^x x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}-\frac {50 \int \frac {\left (4-x+x^2\right ) \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}\\ &=\frac {\int \left (\frac {9 e^4}{25+e^{2 e^{-4+x}+2 x}+25 x^2}+\frac {8 e^x}{25+e^{2 e^{-4+x}+2 x}+25 x^2}-\frac {4 e^4 x}{25+e^{2 e^{-4+x}+2 x}+25 x^2}-\frac {2 e^x x}{25+e^{2 e^{-4+x}+2 x}+25 x^2}+\frac {2 e^4 x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2}+\frac {2 e^x x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2}\right ) \, dx}{e^4}-\frac {50 \int \left (\frac {4 \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}-\frac {x \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {x^2 \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}\right ) \, dx}{e^4}\\ &=2 \int \frac {x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx-4 \int \frac {x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx+9 \int \frac {1}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx-\frac {2 \int \frac {e^x x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {2 \int \frac {e^x x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {8 \int \frac {e^x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {50 \int \frac {x \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}-\frac {50 \int \frac {x^2 \left (e^4+e^x-e^4 x+e^4 x^2+e^x x^2\right )}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}-\frac {200 \int \frac {e^4+e^x-e^4 x+e^4 x^2+e^x x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}\\ &=2 \int \frac {x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx-4 \int \frac {x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx+9 \int \frac {1}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx-\frac {2 \int \frac {e^x x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {2 \int \frac {e^x x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {8 \int \frac {e^x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {50 \int \left (\frac {e^4 x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^x x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}-\frac {e^4 x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^4 x^3}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^x x^3}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}\right ) \, dx}{e^4}-\frac {50 \int \left (\frac {e^4 x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^x x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}-\frac {e^4 x^3}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^4 x^4}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^x x^4}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}\right ) \, dx}{e^4}-\frac {200 \int \left (\frac {e^4}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}-\frac {e^4 x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^4 x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}+\frac {e^x x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2}\right ) \, dx}{e^4}\\ &=2 \int \frac {x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx-4 \int \frac {x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx+9 \int \frac {1}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx+50 \int \frac {x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx-2 \left (50 \int \frac {x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx\right )+2 \left (50 \int \frac {x^3}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx\right )-50 \int \frac {x^4}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx-200 \int \frac {1}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx+200 \int \frac {x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx-200 \int \frac {x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx-\frac {2 \int \frac {e^x x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {2 \int \frac {e^x x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {8 \int \frac {e^x}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \, dx}{e^4}+\frac {50 \int \frac {e^x x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}-\frac {50 \int \frac {e^x x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}+\frac {50 \int \frac {e^x x^3}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}-\frac {50 \int \frac {e^x x^4}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}-\frac {200 \int \frac {e^x}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}-\frac {200 \int \frac {e^x x^2}{\left (25+e^{2 e^{-4+x}+2 x}+25 x^2\right )^2} \, dx}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 32, normalized size = 1.03 \begin {gather*} -\frac {4-x+x^2}{25+e^{2 e^{-4+x}+2 x}+25 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 30, normalized size = 0.97 \begin {gather*} -\frac {x^{2} - x + 4}{25 \, x^{2} + e^{\left (2 \, x + 2 \, e^{\left (x - 4\right )}\right )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 30, normalized size = 0.97 \begin {gather*} -\frac {x^{2} - x + 4}{25 \, x^{2} + e^{\left (2 \, x + 2 \, e^{\left (x - 4\right )}\right )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.00
method | result | size |
risch | \(-\frac {x^{2}-x +4}{25 x^{2}+25+{\mathrm e}^{2 x +2 \,{\mathrm e}^{x -4}}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 30, normalized size = 0.97 \begin {gather*} -\frac {x^{2} - x + 4}{25 \, x^{2} + e^{\left (2 \, x + 2 \, e^{\left (x - 4\right )}\right )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {150\,x+{\mathrm {e}}^{2\,x+2\,{\mathrm {e}}^{x-4}}\,\left ({\mathrm {e}}^{x-4}\,\left (2\,x^2-2\,x+8\right )-4\,x+2\,x^2+9\right )-25\,x^2+25}{{\mathrm {e}}^{4\,x+4\,{\mathrm {e}}^{x-4}}+{\mathrm {e}}^{2\,x+2\,{\mathrm {e}}^{x-4}}\,\left (50\,x^2+50\right )+1250\,x^2+625\,x^4+625} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 0.77 \begin {gather*} \frac {- x^{2} + x - 4}{25 x^{2} + e^{2 x + 2 e^{x - 4}} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________