Optimal. Leaf size=30 \[ \left (2+x^2+\log (5) \left (x^2+\frac {2+\log (2)}{5+x-\log ^2(x)}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 10.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1000 x^2-600 x^3-620 x^4-308 x^5-60 x^6-4 x^7+\left (40 x-1192 x^2-660 x^3-1124 x^4-608 x^5-120 x^6-8 x^7+\left (20 x-96 x^2-30 x^3-2 x^4\right ) \log (2)\right ) \log (5)+\left (8 x-200 x^2-60 x^3-504 x^4-300 x^5-60 x^6-4 x^7+\left (8 x-100 x^2-30 x^3-2 x^4\right ) \log (2)+2 x \log ^2(2)\right ) \log ^2(5)+\left (\left (-80-16 x-40 x^2-8 x^3+\left (-40-8 x-20 x^2-4 x^3\right ) \log (2)\right ) \log (5)+\left (-16-40 x^2-8 x^3+\left (-16-20 x^2-4 x^3\right ) \log (2)-4 \log ^2(2)\right ) \log ^2(5)\right ) \log (x)+\left (600 x^2+240 x^3+324 x^4+120 x^5+12 x^6+\left (-8 x+680 x^2+252 x^3+624 x^4+240 x^5+24 x^6+\left (-4 x+40 x^2+6 x^3\right ) \log (2)\right ) \log (5)+\left (80 x^2+12 x^3+300 x^4+120 x^5+12 x^6+\left (40 x^2+6 x^3\right ) \log (2)\right ) \log ^2(5)\right ) \log ^2(x)+\left (\left (16+8 x^2+\left (8+4 x^2\right ) \log (2)\right ) \log (5)+\left (8 x^2+4 x^2 \log (2)\right ) \log ^2(5)\right ) \log ^3(x)+\left (-120 x^2-24 x^3-60 x^4-12 x^5+\left (-128 x^2-24 x^3-120 x^4-24 x^5-4 x^2 \log (2)\right ) \log (5)+\left (-8 x^2-60 x^4-12 x^5-4 x^2 \log (2)\right ) \log ^2(5)\right ) \log ^4(x)+\left (8 x^2+4 x^4+\left (8 x^2+8 x^4\right ) \log (5)+4 x^4 \log ^2(5)\right ) \log ^6(x)}{-125 x-75 x^2-15 x^3-x^4+\left (75 x+30 x^2+3 x^3\right ) \log ^2(x)+\left (-15 x-3 x^2\right ) \log ^4(x)+x \log ^6(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (x \left (30 x^5 (1+\log (5))^2+2 x^6 (1+\log (5))^2+x^3 (1+\log (5)) (310+(252+\log (2)) \log (5))+2 x^4 \left (77+152 \log (5)+75 \log ^2(5)\right )+2 x \left (250+(298+24 \log (2)) \log (5)+25 (2+\log (2)) \log ^2(5)\right )-(2+\log (2)) \log (5) (10+\log (2) \log (5)+\log (25))+15 x^2 (1+\log (5)) (20+\log (2) \log (5)+\log (25))\right )+\log (5) \left (10 x^2 (2+\log (2)) (1+\log (5))+x^3 (4+\log (4)) (1+\log (5))+x (8+\log (16))+2 (2+\log (2)) (10+\log (2) \log (5)+\log (25))\right ) \log (x)-x \left (-((4+\log (4)) \log (5))+60 x^4 (1+\log (5))^2+6 x^5 (1+\log (5))^2+6 x^3 \left (27+52 \log (5)+25 \log ^2(5)\right )+x^2 (1+\log (5)) (120+\log (5) (6+\log (8)))+20 x (1+\log (5)) (15+\log (2) \log (5)+\log (25))\right ) \log ^2(x)-\log (5) \left (8+x^2 (4+\log (4)) (1+\log (5))+\log (16)\right ) \log ^3(x)+x^2 (1+\log (5)) \left (60+12 x+\log (4) \log (5)+30 x^2 (1+\log (5))+6 x^3 (1+\log (5))+\log (625)\right ) \log ^4(x)-2 x^2 (1+\log (5)) \left (2+x^2 (1+\log (5))\right ) \log ^6(x)\right )}{x \left (5+x-\log ^2(x)\right )^3} \, dx\\ &=2 \int \frac {x \left (30 x^5 (1+\log (5))^2+2 x^6 (1+\log (5))^2+x^3 (1+\log (5)) (310+(252+\log (2)) \log (5))+2 x^4 \left (77+152 \log (5)+75 \log ^2(5)\right )+2 x \left (250+(298+24 \log (2)) \log (5)+25 (2+\log (2)) \log ^2(5)\right )-(2+\log (2)) \log (5) (10+\log (2) \log (5)+\log (25))+15 x^2 (1+\log (5)) (20+\log (2) \log (5)+\log (25))\right )+\log (5) \left (10 x^2 (2+\log (2)) (1+\log (5))+x^3 (4+\log (4)) (1+\log (5))+x (8+\log (16))+2 (2+\log (2)) (10+\log (2) \log (5)+\log (25))\right ) \log (x)-x \left (-((4+\log (4)) \log (5))+60 x^4 (1+\log (5))^2+6 x^5 (1+\log (5))^2+6 x^3 \left (27+52 \log (5)+25 \log ^2(5)\right )+x^2 (1+\log (5)) (120+\log (5) (6+\log (8)))+20 x (1+\log (5)) (15+\log (2) \log (5)+\log (25))\right ) \log ^2(x)-\log (5) \left (8+x^2 (4+\log (4)) (1+\log (5))+\log (16)\right ) \log ^3(x)+x^2 (1+\log (5)) \left (60+12 x+\log (4) \log (5)+30 x^2 (1+\log (5))+6 x^3 (1+\log (5))+\log (625)\right ) \log ^4(x)-2 x^2 (1+\log (5)) \left (2+x^2 (1+\log (5))\right ) \log ^6(x)}{x \left (5+x-\log ^2(x)\right )^3} \, dx\\ &=2 \int \left (2 x (1+\log (5)) \left (2+x^2 (1+\log (5))\right )+\frac {-x \log ^2(2) \log ^2(5) \left (1+\frac {\log (4) \log ^2(5)+\log (2) \log (5) \log (25)+\log ^2(25)}{\log ^2(2) \log ^2(5)}\right )+100 x^2 \log ^2(5) \left (1-\frac {\log (625) \log (298023223876953125)}{100 \log ^2(5)}\right )+\log ^2(5) \log (16) \left (1+\frac {\log ^2(2) \log (25)+\log (4) \log (25)+\log (390625)}{\log (5) \log (16)}\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^3}+\frac {-x \log (4) \log (5) \left (1+\frac {\log (625)}{\log (4) \log (5)}\right )-x^3 \log (2) \log (5) \left (1+\frac {(-6+\log (2)) \log ^2(5)+\log (25) (1+\log (625))}{\log (2) \log (5)}\right )-x^2 \log (625) \log (9765625) \left (1-\frac {\log (25) \log (95367431640625)}{\log (625) \log (9765625)}\right )+x^2 \log (4) \log (5) \left (1+\frac {(4+\log (4)) \log ^2(5)+\log (625)}{\log (4) \log (5)}\right ) \log (x)+\log (5) \log (16) \left (1+\frac {\log (390625)}{\log (5) \log (16)}\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^2}+\frac {x (1+\log (5)) (\log (4) \log (5)+\log (625))}{5+x-\log ^2(x)}\right ) \, dx\\ &=2 \int \frac {-x \log ^2(2) \log ^2(5) \left (1+\frac {\log (4) \log ^2(5)+\log (2) \log (5) \log (25)+\log ^2(25)}{\log ^2(2) \log ^2(5)}\right )+100 x^2 \log ^2(5) \left (1-\frac {\log (625) \log (298023223876953125)}{100 \log ^2(5)}\right )+\log ^2(5) \log (16) \left (1+\frac {\log ^2(2) \log (25)+\log (4) \log (25)+\log (390625)}{\log (5) \log (16)}\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^3} \, dx+2 \int \frac {-x \log (4) \log (5) \left (1+\frac {\log (625)}{\log (4) \log (5)}\right )-x^3 \log (2) \log (5) \left (1+\frac {(-6+\log (2)) \log ^2(5)+\log (25) (1+\log (625))}{\log (2) \log (5)}\right )-x^2 \log (625) \log (9765625) \left (1-\frac {\log (25) \log (95367431640625)}{\log (625) \log (9765625)}\right )+x^2 \log (4) \log (5) \left (1+\frac {(4+\log (4)) \log ^2(5)+\log (625)}{\log (4) \log (5)}\right ) \log (x)+\log (5) \log (16) \left (1+\frac {\log (390625)}{\log (5) \log (16)}\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^2} \, dx+(4 (1+\log (5))) \int x \left (2+x^2 (1+\log (5))\right ) \, dx+(2 (4+\log (4)) \log (5) (1+\log (5))) \int \frac {x}{5+x-\log ^2(x)} \, dx\\ &=2 \int \frac {-x \left (\log (4) \log (5)+\log (625)+x^2 \left (-6 \log ^2(5)+\log (2) \log (5) (1+\log (5))+\log (25) (1+\log (625))\right )+x (\log (625) \log (9765625)-\log (25) \log (95367431640625))\right )+\left (\log (5) \log (16)+x^2 \left (4 \log ^2(5)+\log (4) \log (5) (1+\log (5))+\log (625)\right )+\log (390625)\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^2} \, dx+2 \int \left (\frac {-\log ^2(2) \log ^2(5)-\log (4) \log ^2(5)-\log (2) \log (5) \log (25)-\log ^2(25)}{\left (5+x-\log ^2(x)\right )^3}+\frac {x \left (100 \log ^2(5)-\log (625) \log (298023223876953125)\right )}{\left (5+x-\log ^2(x)\right )^3}+\frac {\log (5) \left (\log (5) \log (16)+\log ^2(2) \log (25)+\log (4) \log (25)+\log (390625)\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^3}\right ) \, dx+(4 (1+\log (5))) \int \left (2 x+x^3 (1+\log (5))\right ) \, dx+(2 (4+\log (4)) \log (5) (1+\log (5))) \int \frac {x}{5+x-\log ^2(x)} \, dx\\ &=4 x^2 (1+\log (5))+x^4 (1+\log (5))^2+2 \int \left (-\frac {\log (4) \log (5) \left (1+\frac {\log (625)}{\log (4) \log (5)}\right )}{\left (5+x-\log ^2(x)\right )^2}+\frac {x^2 \left (6 \log ^2(5)-\log (2) \log (5) (1+\log (5))-\log (25) (1+\log (625))\right )}{\left (5+x-\log ^2(x)\right )^2}-\frac {x (\log (625) \log (9765625)-\log (25) \log (95367431640625))}{\left (5+x-\log ^2(x)\right )^2}+\frac {x \left (4 \log ^2(5)+\log (4) \log (5) (1+\log (5))+\log (625)\right ) \log (x)}{\left (5+x-\log ^2(x)\right )^2}+\frac {\log (5) \log (16) \left (1+\frac {\log (390625)}{\log (5) \log (16)}\right ) \log (x)}{x \left (5+x-\log ^2(x)\right )^2}\right ) \, dx+(2 (4+\log (4)) \log (5) (1+\log (5))) \int \frac {x}{5+x-\log ^2(x)} \, dx+\left (4 \log ^2(5) \left (4+\log ^2(2)+\log (16)\right )\right ) \int \frac {\log (x)}{x \left (5+x-\log ^2(x)\right )^3} \, dx-\left (2 \left (\log ^2(2) \log ^2(5)+\log (4) \log ^2(5)+\log (2) \log (5) \log (25)+\log ^2(25)\right )\right ) \int \frac {1}{\left (5+x-\log ^2(x)\right )^3} \, dx+\left (2 \left (100 \log ^2(5)-\log (625) \log (298023223876953125)\right )\right ) \int \frac {x}{\left (5+x-\log ^2(x)\right )^3} \, dx\\ &=4 x^2 (1+\log (5))+x^4 (1+\log (5))^2+(2 (4+\log (4)) \log (5) (1+\log (5))) \int \frac {x}{5+x-\log ^2(x)} \, dx+\left (4 \log ^2(5) \left (4+\log ^2(2)+\log (16)\right )\right ) \int \frac {\log (x)}{x \left (5+x-\log ^2(x)\right )^3} \, dx-\left (2 \left (\log ^2(2) \log ^2(5)+\log (4) \log ^2(5)+\log (2) \log (5) \log (25)+\log ^2(25)\right )\right ) \int \frac {1}{\left (5+x-\log ^2(x)\right )^3} \, dx+\left (2 \left (4 \log ^2(5)+\log (4) \log (5) (1+\log (5))+\log (625)\right )\right ) \int \frac {x \log (x)}{\left (5+x-\log ^2(x)\right )^2} \, dx-\left (2 \log (4) \log (5) \left (1+\frac {\log (625)}{\log (4) \log (5)}\right )\right ) \int \frac {1}{\left (5+x-\log ^2(x)\right )^2} \, dx+\left (2 \left (6 \log ^2(5)-\log (2) \log (5) (1+\log (5))-\log (25) (1+\log (625))\right )\right ) \int \frac {x^2}{\left (5+x-\log ^2(x)\right )^2} \, dx+\left (2 \log (5) \log (16) \left (1+\frac {\log (390625)}{\log (5) \log (16)}\right )\right ) \int \frac {\log (x)}{x \left (5+x-\log ^2(x)\right )^2} \, dx+\left (2 \left (100 \log ^2(5)-\log (625) \log (298023223876953125)\right )\right ) \int \frac {x}{\left (5+x-\log ^2(x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.88, size = 495, normalized size = 16.50 \begin {gather*} 4 x^2 (1+\log (5))+x^4 (1+\log (5))^2+\frac {x^2 \left (\log ^2(2) \log ^2(5)+5 \log (4) \log (5) (9+10 \log (5))+\log ^2(25)+\log (2) \log (5) (-90-98 \log (5)+\log (25))\right )+x^4 (1+\log (5)) (\log (8) \log (3125)-\log (5) \log (32768))-10 \log (5) \left (\log (5) \log (16)+\log ^2(2) \log (25)+\log (4) \log (25)+\log (390625)\right )-2 x \log (5) \left (\log (5) \log (16)+\log ^2(2) \log (25)+\log (4) \log (25)+\log (390625)\right )+x^3 \left (-100 \log ^2(5)+\log (625) \log (298023223876953125)\right )}{\left (-20-4 x+x^2\right ) \left (5+x-\log ^2(x)\right )^2}+\frac {-8000 \log (5) (8+\log (16))-4800 x \log (5) (8+\log (16))-160 x^2 \log (5) (188+200 \log (5)+5 \log (4) (9+10 \log (5))+\log (16))-4 x^3 \log (5) (3968+3000 \log (2)-430 \log (4)-39 \log (16)+4000 \log (25)+300 \log (5) (16+\log (256))-2000 \log (625))+x^6 \left (\log ^2(5) (-524+390 \log (2)-39 \log (4)-112 \log (8))+360 \log (25)+\log (5) (-516+392 \log (2)-38 \log (4)-112 \log (8)+360 \log (25)-61 \log (625))-61 \log (625)\right )+x^8 (1+\log (5)) (\log (4) \log (5)+\log (625))+4 x^5 \left (2 \log ^2(5) (-312+40 \log (2)+167 \log (4)-90 \log (8))-60 \log (25)+290 \log (625)+\log (5) (-648+76 \log (2)+332 \log (4)-180 \log (8)-\log (16)-60 \log (25)+290 \log (625))\right )+x^4 \left (-20 \log ^2(5) (-28+390 \log (2)-267 \log (4)+40 \log (8))+(-12400+\log (16)) \log (25)+6300 \log (625)+\log (5) (464-7920 \log (2)+5372 \log (4)-800 \log (8)-12400 \log (25)+6300 \log (625))\right )-2 x^7 (1+\log (5)) (15 \log (25)+8 \log (625)+\log (5) (-38+\log (4096)))}{\left (-20-4 x+x^2\right )^3 \left (5+x-\log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 262, normalized size = 8.73 \begin {gather*} \frac {x^{6} + 10 \, x^{5} + {\left (x^{4} \log \relax (5)^{2} + x^{4} + 4 \, x^{2} + 2 \, {\left (x^{4} + 2 \, x^{2}\right )} \log \relax (5)\right )} \log \relax (x)^{4} + 29 \, x^{4} + 40 \, x^{3} + {\left (x^{6} + 10 \, x^{5} + 25 \, x^{4} + 4 \, x^{3} + 20 \, x^{2} + 2 \, {\left (x^{3} + 5 \, x^{2} + 2\right )} \log \relax (2) + \log \relax (2)^{2} + 4\right )} \log \relax (5)^{2} - 2 \, {\left (x^{5} + 5 \, x^{4} + 4 \, x^{3} + {\left (x^{5} + 5 \, x^{4} + x^{2} \log \relax (2) + 2 \, x^{2}\right )} \log \relax (5)^{2} + 20 \, x^{2} + {\left (2 \, x^{5} + 10 \, x^{4} + 4 \, x^{3} + 22 \, x^{2} + {\left (x^{2} + 2\right )} \log \relax (2) + 4\right )} \log \relax (5)\right )} \log \relax (x)^{2} + 100 \, x^{2} + 2 \, {\left (x^{6} + 10 \, x^{5} + 27 \, x^{4} + 22 \, x^{3} + 60 \, x^{2} + {\left (x^{3} + 5 \, x^{2} + 2 \, x + 10\right )} \log \relax (2) + 4 \, x + 20\right )} \log \relax (5)}{\log \relax (x)^{4} - 2 \, {\left (x + 5\right )} \log \relax (x)^{2} + x^{2} + 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.49, size = 242, normalized size = 8.07 \begin {gather*} {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) + 1\right )} x^{4} + 4 \, x^{2} {\left (\log \relax (5) + 1\right )} - \frac {2 \, x^{2} \log \relax (5)^{2} \log \relax (2) \log \relax (x)^{2} - 2 \, x^{3} \log \relax (5)^{2} \log \relax (2) + 4 \, x^{2} \log \relax (5)^{2} \log \relax (x)^{2} + 2 \, x^{2} \log \relax (5) \log \relax (2) \log \relax (x)^{2} - 4 \, x^{3} \log \relax (5)^{2} - 2 \, x^{3} \log \relax (5) \log \relax (2) - 10 \, x^{2} \log \relax (5)^{2} \log \relax (2) + 4 \, x^{2} \log \relax (5) \log \relax (x)^{2} - 4 \, x^{3} \log \relax (5) - 20 \, x^{2} \log \relax (5)^{2} - 10 \, x^{2} \log \relax (5) \log \relax (2) - \log \relax (5)^{2} \log \relax (2)^{2} + 4 \, \log \relax (5) \log \relax (2) \log \relax (x)^{2} - 20 \, x^{2} \log \relax (5) - 4 \, x \log \relax (5) \log \relax (2) - 4 \, \log \relax (5)^{2} \log \relax (2) + 8 \, \log \relax (5) \log \relax (x)^{2} - 8 \, x \log \relax (5) - 4 \, \log \relax (5)^{2} - 20 \, \log \relax (5) \log \relax (2) - 40 \, \log \relax (5)}{\log \relax (x)^{4} - 2 \, x \log \relax (x)^{2} + x^{2} - 10 \, \log \relax (x)^{2} + 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.31, size = 191, normalized size = 6.37
method | result | size |
risch | \(x^{4} \ln \relax (5)^{2}+2 x^{4} \ln \relax (5)+x^{4}+4 x^{2} \ln \relax (5)+4 x^{2}+\frac {\ln \relax (5) \left (-2 \ln \relax (x )^{2} \ln \relax (5) \ln \relax (2) x^{2}+2 \ln \relax (5) \ln \relax (2) x^{3}-4 \ln \relax (x )^{2} \ln \relax (5) x^{2}-2 x^{2} \ln \relax (2) \ln \relax (x )^{2}+10 x^{2} \ln \relax (2) \ln \relax (5)+4 x^{3} \ln \relax (5)+2 x^{3} \ln \relax (2)-4 x^{2} \ln \relax (x )^{2}+\ln \relax (2)^{2} \ln \relax (5)+20 x^{2} \ln \relax (5)+10 x^{2} \ln \relax (2)-4 \ln \relax (2) \ln \relax (x )^{2}+4 x^{3}+4 \ln \relax (2) \ln \relax (5)+4 x \ln \relax (2)+20 x^{2}-8 \ln \relax (x )^{2}+4 \ln \relax (5)+20 \ln \relax (2)+8 x +40\right )}{\left (5+x -\ln \relax (x )^{2}\right )^{2}}\) | \(191\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 279, normalized size = 9.30 \begin {gather*} \frac {{\left (\log \relax (5)^{2} + 2 \, \log \relax (5) + 1\right )} x^{6} + 10 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) + 1\right )} x^{5} + {\left (25 \, \log \relax (5)^{2} + 54 \, \log \relax (5) + 29\right )} x^{4} + {\left ({\left (\log \relax (5)^{2} + 2 \, \log \relax (5) + 1\right )} x^{4} + 4 \, x^{2} {\left (\log \relax (5) + 1\right )}\right )} \log \relax (x)^{4} + 2 \, {\left (2 \, \log \relax (5)^{2} + {\left (\log \relax (5)^{2} + \log \relax (5)\right )} \log \relax (2) + 22 \, \log \relax (5) + 20\right )} x^{3} + \log \relax (5)^{2} \log \relax (2)^{2} + 10 \, {\left (2 \, \log \relax (5)^{2} + {\left (\log \relax (5)^{2} + \log \relax (5)\right )} \log \relax (2) + 12 \, \log \relax (5) + 10\right )} x^{2} - 2 \, {\left ({\left (\log \relax (5)^{2} + 2 \, \log \relax (5) + 1\right )} x^{5} + 5 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) + 1\right )} x^{4} + 4 \, x^{3} {\left (\log \relax (5) + 1\right )} + {\left (2 \, \log \relax (5)^{2} + {\left (\log \relax (5)^{2} + \log \relax (5)\right )} \log \relax (2) + 22 \, \log \relax (5) + 20\right )} x^{2} + 2 \, \log \relax (5) \log \relax (2) + 4 \, \log \relax (5)\right )} \log \relax (x)^{2} + 4 \, {\left (\log \relax (5) \log \relax (2) + 2 \, \log \relax (5)\right )} x + 4 \, \log \relax (5)^{2} + 4 \, {\left (\log \relax (5)^{2} + 5 \, \log \relax (5)\right )} \log \relax (2) + 40 \, \log \relax (5)}{\log \relax (x)^{4} - 2 \, {\left (x + 5\right )} \log \relax (x)^{2} + x^{2} + 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \relax (x)\,\left ({\ln \relax (5)}^2\,\left (\ln \relax (2)\,\left (4\,x^3+20\,x^2+16\right )+4\,{\ln \relax (2)}^2+40\,x^2+8\,x^3+16\right )+\ln \relax (5)\,\left (16\,x+\ln \relax (2)\,\left (4\,x^3+20\,x^2+8\,x+40\right )+40\,x^2+8\,x^3+80\right )\right )-{\ln \relax (x)}^3\,\left ({\ln \relax (5)}^2\,\left (4\,x^2\,\ln \relax (2)+8\,x^2\right )+\ln \relax (5)\,\left (\ln \relax (2)\,\left (4\,x^2+8\right )+8\,x^2+16\right )\right )-{\ln \relax (x)}^6\,\left (4\,x^4\,{\ln \relax (5)}^2+\ln \relax (5)\,\left (8\,x^4+8\,x^2\right )+8\,x^2+4\,x^4\right )+{\ln \relax (x)}^4\,\left (\ln \relax (5)\,\left (4\,x^2\,\ln \relax (2)+128\,x^2+24\,x^3+120\,x^4+24\,x^5\right )+{\ln \relax (5)}^2\,\left (4\,x^2\,\ln \relax (2)+8\,x^2+60\,x^4+12\,x^5\right )+120\,x^2+24\,x^3+60\,x^4+12\,x^5\right )-{\ln \relax (x)}^2\,\left ({\ln \relax (5)}^2\,\left (\ln \relax (2)\,\left (6\,x^3+40\,x^2\right )+80\,x^2+12\,x^3+300\,x^4+120\,x^5+12\,x^6\right )+\ln \relax (5)\,\left (\ln \relax (2)\,\left (6\,x^3+40\,x^2-4\,x\right )-8\,x+680\,x^2+252\,x^3+624\,x^4+240\,x^5+24\,x^6\right )+600\,x^2+240\,x^3+324\,x^4+120\,x^5+12\,x^6\right )+1000\,x^2+600\,x^3+620\,x^4+308\,x^5+60\,x^6+4\,x^7+\ln \relax (5)\,\left (\ln \relax (2)\,\left (2\,x^4+30\,x^3+96\,x^2-20\,x\right )-40\,x+1192\,x^2+660\,x^3+1124\,x^4+608\,x^5+120\,x^6+8\,x^7\right )+{\ln \relax (5)}^2\,\left (\ln \relax (2)\,\left (2\,x^4+30\,x^3+100\,x^2-8\,x\right )-2\,x\,{\ln \relax (2)}^2-8\,x+200\,x^2+60\,x^3+504\,x^4+300\,x^5+60\,x^6+4\,x^7\right )}{125\,x+{\ln \relax (x)}^4\,\left (3\,x^2+15\,x\right )-x\,{\ln \relax (x)}^6-{\ln \relax (x)}^2\,\left (3\,x^3+30\,x^2+75\,x\right )+75\,x^2+15\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.60, size = 260, normalized size = 8.67 \begin {gather*} x^{4} \left (1 + \log {\relax (5 )}^{2} + 2 \log {\relax (5 )}\right ) + x^{2} \left (4 + 4 \log {\relax (5 )}\right ) + \frac {2 x^{3} \log {\relax (2 )} \log {\relax (5 )} + 2 x^{3} \log {\relax (2 )} \log {\relax (5 )}^{2} + 4 x^{3} \log {\relax (5 )} + 4 x^{3} \log {\relax (5 )}^{2} + 10 x^{2} \log {\relax (2 )} \log {\relax (5 )} + 10 x^{2} \log {\relax (2 )} \log {\relax (5 )}^{2} + 20 x^{2} \log {\relax (5 )} + 20 x^{2} \log {\relax (5 )}^{2} + 4 x \log {\relax (2 )} \log {\relax (5 )} + 8 x \log {\relax (5 )} + \left (- 4 x^{2} \log {\relax (5 )}^{2} - 4 x^{2} \log {\relax (5 )} - 2 x^{2} \log {\relax (2 )} \log {\relax (5 )}^{2} - 2 x^{2} \log {\relax (2 )} \log {\relax (5 )} - 8 \log {\relax (5 )} - 4 \log {\relax (2 )} \log {\relax (5 )}\right ) \log {\relax (x )}^{2} + \log {\relax (2 )}^{2} \log {\relax (5 )}^{2} + 4 \log {\relax (2 )} \log {\relax (5 )}^{2} + 4 \log {\relax (5 )}^{2} + 20 \log {\relax (2 )} \log {\relax (5 )} + 40 \log {\relax (5 )}}{x^{2} + 10 x + \left (- 2 x - 10\right ) \log {\relax (x )}^{2} + \log {\relax (x )}^{4} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________