Optimal. Leaf size=21 \[ e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \left (\left (-5+e^{x+x^2}\right ) \log \left (5-e^{x+x^2}\right )+e^{x+x^2} \left (x+2 x^2\right ) \log \left (-\frac {x}{4}\right )\right )}{-5 x+e^{x+x^2} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} (1+2 x) \log \left (-\frac {x}{4}\right )}{-5+e^{x+x^2}}+\frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \left (\log \left (5-e^{x+x^2}\right )+x \log \left (-\frac {x}{4}\right )+2 x^2 \log \left (-\frac {x}{4}\right )\right )}{x}\right ) \, dx\\ &=5 \int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} (1+2 x) \log \left (-\frac {x}{4}\right )}{-5+e^{x+x^2}} \, dx+\int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \left (\log \left (5-e^{x+x^2}\right )+x \log \left (-\frac {x}{4}\right )+2 x^2 \log \left (-\frac {x}{4}\right )\right )}{x} \, dx\\ &=5 \int \left (5-e^{x+x^2}\right )^{-1+\log \left (-\frac {x}{4}\right )} (-1-2 x) \log \left (-\frac {x}{4}\right ) \, dx+\int \left (\frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \log \left (5-e^{x+x^2}\right )}{x}+e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} (1+2 x) \log \left (-\frac {x}{4}\right )\right ) \, dx\\ &=20 \operatorname {Subst}\left (\int \left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} (-1-8 x) \log (-x) \, dx,x,\frac {x}{4}\right )+\int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \log \left (5-e^{x+x^2}\right )}{x} \, dx+\int e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} (1+2 x) \log \left (-\frac {x}{4}\right ) \, dx\\ &=4 \operatorname {Subst}\left (\int e^{\log \left (5-e^{4 x (1+4 x)}\right ) \log (-x)} (1+8 x) \log (-x) \, dx,x,\frac {x}{4}\right )+20 \operatorname {Subst}\left (\int \left (-\left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} \log (-x)-8 \left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} x \log (-x)\right ) \, dx,x,\frac {x}{4}\right )+\int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \log \left (5-e^{x+x^2}\right )}{x} \, dx\\ &=4 \operatorname {Subst}\left (\int \left (e^{\log \left (5-e^{4 x (1+4 x)}\right ) \log (-x)} \log (-x)+8 e^{\log \left (5-e^{4 x (1+4 x)}\right ) \log (-x)} x \log (-x)\right ) \, dx,x,\frac {x}{4}\right )-20 \operatorname {Subst}\left (\int \left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} \log (-x) \, dx,x,\frac {x}{4}\right )-160 \operatorname {Subst}\left (\int \left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} x \log (-x) \, dx,x,\frac {x}{4}\right )+\int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \log \left (5-e^{x+x^2}\right )}{x} \, dx\\ &=4 \operatorname {Subst}\left (\int e^{\log \left (5-e^{4 x (1+4 x)}\right ) \log (-x)} \log (-x) \, dx,x,\frac {x}{4}\right )-20 \operatorname {Subst}\left (\int \left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} \log (-x) \, dx,x,\frac {x}{4}\right )+32 \operatorname {Subst}\left (\int e^{\log \left (5-e^{4 x (1+4 x)}\right ) \log (-x)} x \log (-x) \, dx,x,\frac {x}{4}\right )-160 \operatorname {Subst}\left (\int \left (5-e^{4 x (1+4 x)}\right )^{-1+\log (-x)} x \log (-x) \, dx,x,\frac {x}{4}\right )+\int \frac {e^{\log \left (5-e^{x+x^2}\right ) \log \left (-\frac {x}{4}\right )} \log \left (5-e^{x+x^2}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.78, size = 18, normalized size = 0.86 \begin {gather*} \left (5-e^{x+x^2}\right )^{\log \left (-\frac {x}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 17, normalized size = 0.81 \begin {gather*} e^{\left (\log \left (-\frac {1}{4} \, x\right ) \log \left (-e^{\left (x^{2} + x\right )} + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 17, normalized size = 0.81 \begin {gather*} e^{\left (\log \left (-\frac {1}{4} \, x\right ) \log \left (-e^{\left (x^{2} + x\right )} + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.76
method | result | size |
risch | \(\left (-\frac {x}{4}\right )^{\ln \left (-{\mathrm e}^{\left (x +1\right ) x}+5\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 33, normalized size = 1.57 \begin {gather*} e^{\left (-2 \, \log \relax (2) \log \left (-e^{\left (x^{2} + x\right )} + 5\right ) + \log \left (-x\right ) \log \left (-e^{\left (x^{2} + x\right )} + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 15, normalized size = 0.71 \begin {gather*} {\left (5-{\mathrm {e}}^{x^2+x}\right )}^{\ln \left (-\frac {x}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________