Optimal. Leaf size=31 \[ \log \left (-e^{e^2}+e^x-e^{\left (x+x \log ^2\left (\frac {4}{\log (3)}\right )\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 45, normalized size of antiderivative = 1.45, number of steps used = 1, number of rules used = 1, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {6684} \begin {gather*} \log \left (\exp \left (x^2+x^2 \log ^4\left (\frac {4}{\log (3)}\right )+2 x^2 \log ^2\left (\frac {4}{\log (3)}\right )\right )-e^x+e^{e^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (e^{e^2}-e^x+\exp \left (x^2+2 x^2 \log ^2\left (\frac {4}{\log (3)}\right )+x^2 \log ^4\left (\frac {4}{\log (3)}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.59, size = 31, normalized size = 1.00 \begin {gather*} \log \left (e^{e^2}-e^x+e^{x^2 \left (1+\log ^2\left (\frac {4}{\log (3)}\right )\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 41, normalized size = 1.32 \begin {gather*} \log \left (e^{\left (x^{2} \log \left (\frac {4}{\log \relax (3)}\right )^{4} + 2 \, x^{2} \log \left (\frac {4}{\log \relax (3)}\right )^{2} + x^{2}\right )} - e^{x} + e^{\left (e^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 37, normalized size = 1.19
method | result | size |
risch | \(\ln \left ({\mathrm e}^{x^{2} \left (\ln \left (\ln \relax (3)\right )^{2}-4 \ln \relax (2) \ln \left (\ln \relax (3)\right )+4 \ln \relax (2)^{2}+1\right )^{2}}+{\mathrm e}^{{\mathrm e}^{2}}-{\mathrm e}^{x}\right )\) | \(37\) |
derivativedivides | \(\ln \left ({\mathrm e}^{x^{2} \ln \left (\frac {4}{\ln \relax (3)}\right )^{4}+2 x^{2} \ln \left (\frac {4}{\ln \relax (3)}\right )^{2}+x^{2}}+{\mathrm e}^{{\mathrm e}^{2}}-{\mathrm e}^{x}\right )\) | \(44\) |
default | \(\ln \left ({\mathrm e}^{x^{2} \ln \left (\frac {4}{\ln \relax (3)}\right )^{4}+2 x^{2} \ln \left (\frac {4}{\ln \relax (3)}\right )^{2}+x^{2}}+{\mathrm e}^{{\mathrm e}^{2}}-{\mathrm e}^{x}\right )\) | \(44\) |
norman | \(\ln \left ({\mathrm e}^{x^{2} \ln \left (\frac {4}{\ln \relax (3)}\right )^{4}+2 x^{2} \ln \left (\frac {4}{\ln \relax (3)}\right )^{2}+x^{2}}+{\mathrm e}^{{\mathrm e}^{2}}-{\mathrm e}^{x}\right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 205, normalized size = 6.61 \begin {gather*} {\left (16 \, \log \relax (2)^{4} - 32 \, \log \relax (2)^{3} \log \left (\log \relax (3)\right ) + \log \left (\log \relax (3)\right )^{4} - 8 \, {\left (\log \left (\log \relax (3)\right )^{3} + \log \left (\log \relax (3)\right )\right )} \log \relax (2) + 8 \, \log \relax (2)^{2} + 2 \, \log \left (\log \relax (3)\right )^{2} + 1\right )} x^{2} + \log \left (-{\left ({\left (e^{x} - e^{\left (e^{2}\right )}\right )} e^{\left (32 \, x^{2} \log \relax (2)^{3} \log \left (\log \relax (3)\right ) + 8 \, x^{2} \log \relax (2) \log \left (\log \relax (3)\right )^{3} + 8 \, x^{2} \log \relax (2) \log \left (\log \relax (3)\right )\right )} - e^{\left (16 \, x^{2} \log \relax (2)^{4} + 24 \, x^{2} \log \relax (2)^{2} \log \left (\log \relax (3)\right )^{2} + x^{2} \log \left (\log \relax (3)\right )^{4} + 8 \, x^{2} \log \relax (2)^{2} + 2 \, x^{2} \log \left (\log \relax (3)\right )^{2} + x^{2}\right )}\right )} e^{\left (-16 \, x^{2} \log \relax (2)^{4} - x^{2} \log \left (\log \relax (3)\right )^{4} - 8 \, x^{2} \log \relax (2)^{2} - 2 \, x^{2} \log \left (\log \relax (3)\right )^{2} - x^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.93, size = 110, normalized size = 3.55 \begin {gather*} \ln \left ({\mathrm {e}}^{{\mathrm {e}}^2}-{\mathrm {e}}^x+\frac {{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{8\,x^2\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{16\,x^2\,{\ln \relax (2)}^4}\,{\mathrm {e}}^{24\,x^2\,{\ln \relax (2)}^2\,{\ln \left (\ln \relax (3)\right )}^2}\,{\mathrm {e}}^{x^2\,{\ln \left (\ln \relax (3)\right )}^4}\,{\mathrm {e}}^{2\,x^2\,{\ln \left (\ln \relax (3)\right )}^2}}{2^{8\,x^2\,\ln \left (\ln \relax (3)\right )}\,2^{8\,x^2\,{\ln \left (\ln \relax (3)\right )}^3}\,{\ln \relax (3)}^{32\,x^2\,{\ln \relax (2)}^3}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 39, normalized size = 1.26 \begin {gather*} \log {\left (- e^{x} + e^{x^{2} + x^{2} \log {\left (\frac {4}{\log {\relax (3 )}} \right )}^{4} + 2 x^{2} \log {\left (\frac {4}{\log {\relax (3 )}} \right )}^{2}} + e^{e^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________