Optimal. Leaf size=27 \[ \frac {x}{-3+e^{-2 \left (\frac {e-e^4+x}{x}-\log (2)\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 3.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 e^{\frac {2 \left (2 e-2 e^4+2 x-2 x \log (2)\right )}{x}} x+e^{\frac {2 e-2 e^4+2 x-2 x \log (2)}{x}} \left (-2 e+2 e^4+x\right )}{x-6 e^{\frac {2 e-2 e^4+2 x-2 x \log (2)}{x}} x+9 e^{\frac {2 \left (2 e-2 e^4+2 x-2 x \log (2)\right )}{x}} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+\frac {2 e}{x}} \left (-8 e^{1+\frac {2 e^4}{x}} \left (1-e^3\right )-3 e^{2+\frac {2 e}{x}} x+4 e^{\frac {2 e^4}{x}} x\right )}{\left (3 e^{2+\frac {2 e}{x}}-4 e^{\frac {2 e^4}{x}}\right )^2 x} \, dx\\ &=\int \left (\frac {6 e^{5+\frac {4 e}{x}} \left (-1+e^3\right )}{\left (3 e^{2+\frac {2 e}{x}}-4 e^{\frac {2 e^4}{x}}\right )^2 x}+\frac {e^{2+\frac {2 e}{x}} \left (-2 e+2 e^4+x\right )}{\left (-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}\right ) x}\right ) \, dx\\ &=-\left (\left (6 \left (1-e^3\right )\right ) \int \frac {e^{5+\frac {4 e}{x}}}{\left (3 e^{2+\frac {2 e}{x}}-4 e^{\frac {2 e^4}{x}}\right )^2 x} \, dx\right )+\int \frac {e^{2+\frac {2 e}{x}} \left (-2 e+2 e^4+x\right )}{\left (-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}\right ) x} \, dx\\ &=\left (6 \left (1-e^3\right )\right ) \operatorname {Subst}\left (\int \frac {e^{5+4 e x}}{\left (4 e^{2 e^4 x}-3 e^{2+2 e x}\right )^2 x} \, dx,x,\frac {1}{x}\right )+\int \left (\frac {e^{2+\frac {2 e}{x}}}{-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}}+\frac {2 e^{3+\frac {2 e}{x}} \left (-1+e^3\right )}{\left (-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}\right ) x}\right ) \, dx\\ &=-\left (\left (2 \left (1-e^3\right )\right ) \int \frac {e^{3+\frac {2 e}{x}}}{\left (-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}\right ) x} \, dx\right )+\left (6 \left (1-e^3\right )\right ) \operatorname {Subst}\left (\int \frac {e^{5+4 e x-4 e^4 x}}{\left (4-3 e^{2+2 e \left (1-e^3\right ) x}\right )^2 x} \, dx,x,\frac {1}{x}\right )+\int \frac {e^{2+\frac {2 e}{x}}}{-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}} \, dx\\ &=\left (2 \left (1-e^3\right )\right ) \operatorname {Subst}\left (\int \frac {e^{3+2 e x}}{4 e^{2 e^4 x} x-3 e^{2+2 e x} x} \, dx,x,\frac {1}{x}\right )+\left (6 \left (1-e^3\right )\right ) \operatorname {Subst}\left (\int \frac {e^{5+4 e \left (1-e^3\right ) x}}{\left (4-3 e^{2+2 e \left (1-e^3\right ) x}\right )^2 x} \, dx,x,\frac {1}{x}\right )+\int \frac {e^{2+\frac {2 e}{x}}}{-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 39, normalized size = 1.44 \begin {gather*} \frac {e^{2+\frac {2 e}{x}} x}{-3 e^{2+\frac {2 e}{x}}+4 e^{\frac {2 e^4}{x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 49, normalized size = 1.81 \begin {gather*} -\frac {x e^{\left (-\frac {2 \, {\left (x \log \relax (2) - x + e^{4} - e\right )}}{x}\right )}}{3 \, e^{\left (-\frac {2 \, {\left (x \log \relax (2) - x + e^{4} - e\right )}}{x}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 37, normalized size = 1.37 \begin {gather*} -\frac {x e^{\left (\frac {2 \, {\left (x - e^{4} + e\right )}}{x}\right )}}{3 \, e^{\left (\frac {2 \, {\left (x - e^{4} + e\right )}}{x}\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 28, normalized size = 1.04
method | result | size |
risch | \(-\frac {x}{3}-\frac {x}{3 \left (\frac {3 \,{\mathrm e}^{\frac {2 \,{\mathrm e}+2 x -2 \,{\mathrm e}^{4}}{x}}}{4}-1\right )}\) | \(28\) |
norman | \(-\frac {x \,{\mathrm e}^{\frac {-2 x \ln \relax (2)-2 \,{\mathrm e}^{4}+2 \,{\mathrm e}+2 x}{x}}}{3 \,{\mathrm e}^{\frac {-2 x \ln \relax (2)-2 \,{\mathrm e}^{4}+2 \,{\mathrm e}+2 x}{x}}-1}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 37, normalized size = 1.37 \begin {gather*} \frac {x e^{\left (\frac {2 \, e}{x} + 2\right )}}{4 \, e^{\left (\frac {2 \, e^{4}}{x}\right )} - 3 \, e^{\left (\frac {2 \, e}{x} + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.00, size = 31, normalized size = 1.15 \begin {gather*} -\frac {x}{3}-\frac {x}{3\,\left (\frac {3\,{\mathrm {e}}^{\frac {2\,\mathrm {e}}{x}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^4}{x}}\,{\mathrm {e}}^2}{4}-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 32, normalized size = 1.19 \begin {gather*} - \frac {x}{3} - \frac {x}{9 e^{\frac {- 2 x \log {\relax (2 )} + 2 x - 2 e^{4} + 2 e}{x}} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________