Optimal. Leaf size=26 \[ 3 \left (\frac {1}{x}+\frac {1}{4} \left (\sqrt [3]{e}-e^{x^2}+x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.24, antiderivative size = 68, normalized size of antiderivative = 2.62, number of steps used = 13, number of rules used = 8, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.113, Rules used = {12, 14, 2209, 1590, 6742, 2204, 2214, 2212} \begin {gather*} \frac {3 \left (x^2+\sqrt [3]{e} x+4\right )^2}{16 x^2}+\frac {3 e^{2 x^2}}{16}-\frac {3}{8} e^{x^2+\frac {1}{3}}-\frac {3 e^{x^2} x}{8}-\frac {3 e^{x^2}}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 1590
Rule 2204
Rule 2209
Rule 2212
Rule 2214
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {-48+3 x^4+6 e^{2 x^2} x^4+\sqrt [3]{e} \left (-12 x+3 x^3\right )+e^{x^2} \left (12 x-27 x^3-6 \sqrt [3]{e} x^4-6 x^5\right )}{x^3} \, dx\\ &=\frac {1}{8} \int \left (6 e^{2 x^2} x+\frac {3 \left (-4+x^2\right ) \left (4+\sqrt [3]{e} x+x^2\right )}{x^3}-\frac {3 e^{x^2} \left (-4+9 x^2+2 \sqrt [3]{e} x^3+2 x^4\right )}{x^2}\right ) \, dx\\ &=\frac {3}{8} \int \frac {\left (-4+x^2\right ) \left (4+\sqrt [3]{e} x+x^2\right )}{x^3} \, dx-\frac {3}{8} \int \frac {e^{x^2} \left (-4+9 x^2+2 \sqrt [3]{e} x^3+2 x^4\right )}{x^2} \, dx+\frac {3}{4} \int e^{2 x^2} x \, dx\\ &=\frac {3 e^{2 x^2}}{16}+\frac {3 \left (4+\sqrt [3]{e} x+x^2\right )^2}{16 x^2}-\frac {3}{8} \int \left (9 e^{x^2}-\frac {4 e^{x^2}}{x^2}+2 e^{\frac {1}{3}+x^2} x+2 e^{x^2} x^2\right ) \, dx\\ &=\frac {3 e^{2 x^2}}{16}+\frac {3 \left (4+\sqrt [3]{e} x+x^2\right )^2}{16 x^2}-\frac {3}{4} \int e^{\frac {1}{3}+x^2} x \, dx-\frac {3}{4} \int e^{x^2} x^2 \, dx+\frac {3}{2} \int \frac {e^{x^2}}{x^2} \, dx-\frac {27}{8} \int e^{x^2} \, dx\\ &=\frac {3 e^{2 x^2}}{16}-\frac {3}{8} e^{\frac {1}{3}+x^2}-\frac {3 e^{x^2}}{2 x}-\frac {3 e^{x^2} x}{8}+\frac {3 \left (4+\sqrt [3]{e} x+x^2\right )^2}{16 x^2}-\frac {27}{16} \sqrt {\pi } \text {erfi}(x)+\frac {3}{8} \int e^{x^2} \, dx+3 \int e^{x^2} \, dx\\ &=\frac {3 e^{2 x^2}}{16}-\frac {3}{8} e^{\frac {1}{3}+x^2}-\frac {3 e^{x^2}}{2 x}-\frac {3 e^{x^2} x}{8}+\frac {3 \left (4+\sqrt [3]{e} x+x^2\right )^2}{16 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.14, size = 67, normalized size = 2.58 \begin {gather*} -\frac {3}{8} \left (-\frac {1}{2} e^{2 x^2}+e^{\frac {1}{3}+x^2}+e^{x^2} \left (\frac {4}{x}+x\right )-\frac {\left (-4+x^2\right )^2}{2 x^2}-\frac {\sqrt [3]{e} \left (4+x^2\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 50, normalized size = 1.92 \begin {gather*} \frac {3 \, {\left (x^{4} + x^{2} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x^{3} + 4 \, x\right )} e^{\frac {1}{3}} - 2 \, {\left (x^{3} + x^{2} e^{\frac {1}{3}} + 4 \, x\right )} e^{\left (x^{2}\right )} + 16\right )}}{16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 59, normalized size = 2.27 \begin {gather*} \frac {3 \, {\left (x^{4} + 2 \, x^{3} e^{\frac {1}{3}} - 2 \, x^{3} e^{\left (x^{2}\right )} + x^{2} e^{\left (2 \, x^{2}\right )} - 2 \, x^{2} e^{\left (x^{2} + \frac {1}{3}\right )} + 8 \, x e^{\frac {1}{3}} - 8 \, x e^{\left (x^{2}\right )} + 16\right )}}{16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 50, normalized size = 1.92
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{\frac {1}{3}} x}{8}+\frac {3 x^{2}}{16}+\frac {12 \,{\mathrm e}^{\frac {1}{3}} x +24}{8 x^{2}}+\frac {3 \,{\mathrm e}^{2 x^{2}}}{16}-\frac {3 \left ({\mathrm e}^{\frac {1}{3}} x +x^{2}+4\right ) {\mathrm e}^{x^{2}}}{8 x}\) | \(50\) |
default | \(\frac {3 x^{2}}{16}+\frac {3}{x^{2}}+\frac {3 \,{\mathrm e}^{\frac {1}{3}}}{2 x}+\frac {3 \,{\mathrm e}^{2 x^{2}}}{16}-\frac {3 \,{\mathrm e}^{x^{2}} x}{8}-\frac {3 \,{\mathrm e}^{x^{2}}}{2 x}-\frac {3 \,{\mathrm e}^{\frac {1}{3}} {\mathrm e}^{x^{2}}}{8}+\frac {3 \,{\mathrm e}^{\frac {1}{3}} x}{8}\) | \(56\) |
norman | \(\frac {3+\frac {3 x^{4}}{16}+\frac {3 x^{2} {\mathrm e}^{2 x^{2}}}{16}+\frac {3 x^{3} {\mathrm e}^{\frac {1}{3}}}{8}-\frac {3 x^{3} {\mathrm e}^{x^{2}}}{8}+\frac {3 \,{\mathrm e}^{\frac {1}{3}} x}{2}-\frac {3 \,{\mathrm e}^{x^{2}} x}{2}-\frac {3 x^{2} {\mathrm e}^{\frac {1}{3}} {\mathrm e}^{x^{2}}}{8}}{x^{2}}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 74, normalized size = 2.85 \begin {gather*} \frac {3}{16} \, x^{2} + \frac {3}{8} \, x e^{\frac {1}{3}} - \frac {3}{8} \, x e^{\left (x^{2}\right )} + \frac {3}{2} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x\right ) - \frac {3 \, \sqrt {-x^{2}} \Gamma \left (-\frac {1}{2}, -x^{2}\right )}{4 \, x} + \frac {3 \, e^{\frac {1}{3}}}{2 \, x} + \frac {3}{x^{2}} + \frac {3}{16} \, e^{\left (2 \, x^{2}\right )} - \frac {3}{8} \, e^{\left (x^{2} + \frac {1}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.27, size = 56, normalized size = 2.15 \begin {gather*} \frac {3\,{\mathrm {e}}^{2\,x^2}}{16}-\frac {3\,{\mathrm {e}}^{x^2+\frac {1}{3}}}{8}-\frac {x\,\left (\frac {3\,{\mathrm {e}}^{x^2}}{2}-\frac {3\,{\mathrm {e}}^{1/3}}{2}\right )-3}{x^2}-x\,\left (\frac {3\,{\mathrm {e}}^{x^2}}{8}-\frac {3\,{\mathrm {e}}^{1/3}}{8}\right )+\frac {3\,x^2}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 66, normalized size = 2.54 \begin {gather*} \frac {3 x^{2}}{16} + \frac {3 x e^{\frac {1}{3}}}{8} + \frac {24 x e^{2 x^{2}} + \left (- 48 x^{2} - 48 x e^{\frac {1}{3}} - 192\right ) e^{x^{2}}}{128 x} + \frac {12 x e^{\frac {1}{3}} + 24}{8 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________