Optimal. Leaf size=33 \[ \frac {1}{25} e^{\frac {2 e^{3-x}}{x}-2 x} x+x^{\left .\frac {1}{2}\right /x} \]
________________________________________________________________________________________
Rubi [F] time = 1.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 \left (e^{3-x}-x^2\right )}{x}} \left (2 x^2-4 x^3+e^{3-x} \left (-4 x-4 x^2\right )\right )+x^{\left .\frac {1}{2}\right /x} (25-25 \log (x))}{50 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{50} \int \frac {e^{\frac {2 \left (e^{3-x}-x^2\right )}{x}} \left (2 x^2-4 x^3+e^{3-x} \left (-4 x-4 x^2\right )\right )+x^{\left .\frac {1}{2}\right /x} (25-25 \log (x))}{x^2} \, dx\\ &=\frac {1}{50} \int \left (-\frac {2 e^{\frac {2 e^{3-x}}{x}-3 x} \left (2 e^3+2 e^3 x-e^x x+2 e^x x^2\right )}{x}-25 x^{-2+\frac {1}{2 x}} (-1+\log (x))\right ) \, dx\\ &=-\left (\frac {1}{25} \int \frac {e^{\frac {2 e^{3-x}}{x}-3 x} \left (2 e^3+2 e^3 x-e^x x+2 e^x x^2\right )}{x} \, dx\right )-\frac {1}{2} \int x^{-2+\frac {1}{2 x}} (-1+\log (x)) \, dx\\ &=-\left (\frac {1}{25} \int \frac {e^{\frac {2 e^{3-x}}{x}-3 x} \left (2 e^3 (1+x)+e^x x (-1+2 x)\right )}{x} \, dx\right )-\frac {1}{2} \int \left (-x^{-2+\frac {1}{2 x}}+x^{-2+\frac {1}{2 x}} \log (x)\right ) \, dx\\ &=-\left (\frac {1}{25} \int \left (\frac {2 e^{3+\frac {2 e^{3-x}}{x}-3 x} (1+x)}{x}+e^{\frac {2 e^{3-x}}{x}-2 x} (-1+2 x)\right ) \, dx\right )+\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \, dx-\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \log (x) \, dx\\ &=-\left (\frac {1}{25} \int e^{\frac {2 e^{3-x}}{x}-2 x} (-1+2 x) \, dx\right )-\frac {2}{25} \int \frac {e^{3+\frac {2 e^{3-x}}{x}-3 x} (1+x)}{x} \, dx+\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \, dx+\frac {1}{2} \int \frac {\int x^{-2+\frac {1}{2 x}} \, dx}{x} \, dx-\frac {1}{2} \log (x) \int x^{-2+\frac {1}{2 x}} \, dx\\ &=-\left (\frac {1}{25} \int \left (-e^{\frac {2 e^{3-x}}{x}-2 x}+2 e^{\frac {2 e^{3-x}}{x}-2 x} x\right ) \, dx\right )-\frac {2}{25} \int \left (e^{3+\frac {2 e^{3-x}}{x}-3 x}+\frac {e^{3+\frac {2 e^{3-x}}{x}-3 x}}{x}\right ) \, dx+\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \, dx+\frac {1}{2} \int \frac {\int x^{-2+\frac {1}{2 x}} \, dx}{x} \, dx-\frac {1}{2} \log (x) \int x^{-2+\frac {1}{2 x}} \, dx\\ &=\frac {1}{25} \int e^{\frac {2 e^{3-x}}{x}-2 x} \, dx-\frac {2}{25} \int e^{3+\frac {2 e^{3-x}}{x}-3 x} \, dx-\frac {2}{25} \int \frac {e^{3+\frac {2 e^{3-x}}{x}-3 x}}{x} \, dx-\frac {2}{25} \int e^{\frac {2 e^{3-x}}{x}-2 x} x \, dx+\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \, dx+\frac {1}{2} \int \frac {\int x^{-2+\frac {1}{2 x}} \, dx}{x} \, dx-\frac {1}{2} \log (x) \int x^{-2+\frac {1}{2 x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.65, size = 37, normalized size = 1.12 \begin {gather*} \frac {1}{50} \left (2 e^{\frac {2 e^{3-x}}{x}-2 x} x+50 x^{\left .\frac {1}{2}\right /x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 29, normalized size = 0.88 \begin {gather*} \frac {1}{25} \, x e^{\left (-\frac {2 \, {\left (x^{2} - e^{\left (-x + 3\right )}\right )}}{x}\right )} + x^{\frac {1}{2 \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {25 \, x^{\frac {1}{2 \, x}} {\left (\log \relax (x) - 1\right )} + 2 \, {\left (2 \, x^{3} - x^{2} + 2 \, {\left (x^{2} + x\right )} e^{\left (-x + 3\right )}\right )} e^{\left (-\frac {2 \, {\left (x^{2} - e^{\left (-x + 3\right )}\right )}}{x}\right )}}{50 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 30, normalized size = 0.91
method | result | size |
risch | \(x^{\frac {1}{2 x}}+\frac {x \,{\mathrm e}^{-\frac {2 \left (-{\mathrm e}^{3-x}+x^{2}\right )}{x}}}{25}\) | \(30\) |
default | \({\mathrm e}^{\frac {\ln \relax (x )}{2 x}}+\frac {x \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{3-x}-2 x^{2}}{x}}}{25}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 35, normalized size = 1.06 \begin {gather*} \frac {1}{25} \, {\left (x e^{\left (\frac {2 \, e^{\left (-x + 3\right )}}{x}\right )} + 25 \, e^{\left (2 \, x + \frac {\log \relax (x)}{2 \, x}\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.65, size = 27, normalized size = 0.82 \begin {gather*} x^{\frac {1}{2\,x}}+\frac {x\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3}{x}}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________