Optimal. Leaf size=28 \[ \frac {3}{2 x^3}-x+\frac {x+x^2 (-5+x+\log (2 x))}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.71, number of steps used = 6, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {12, 14, 2295} \begin {gather*} \frac {3}{2 x^3}+x^2-6 x+x \log (2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-9-10 x^4+4 x^5+2 x^4 \log (2 x)}{x^4} \, dx\\ &=\frac {1}{2} \int \left (\frac {-9-10 x^4+4 x^5}{x^4}+2 \log (2 x)\right ) \, dx\\ &=\frac {1}{2} \int \frac {-9-10 x^4+4 x^5}{x^4} \, dx+\int \log (2 x) \, dx\\ &=-x+x \log (2 x)+\frac {1}{2} \int \left (-10-\frac {9}{x^4}+4 x\right ) \, dx\\ &=\frac {3}{2 x^3}-6 x+x^2+x \log (2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 20, normalized size = 0.71 \begin {gather*} \frac {3}{2 x^3}-6 x+x^2+x \log (2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 26, normalized size = 0.93 \begin {gather*} \frac {2 \, x^{5} + 2 \, x^{4} \log \left (2 \, x\right ) - 12 \, x^{4} + 3}{2 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 18, normalized size = 0.64 \begin {gather*} x^{2} + x \log \left (2 \, x\right ) - 6 \, x + \frac {3}{2 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.68
method | result | size |
derivativedivides | \(x \ln \left (2 x \right )-6 x +x^{2}+\frac {3}{2 x^{3}}\) | \(19\) |
default | \(x \ln \left (2 x \right )-6 x +x^{2}+\frac {3}{2 x^{3}}\) | \(19\) |
norman | \(\frac {\frac {3}{2}+x^{5}+x^{4} \ln \left (2 x \right )-6 x^{4}}{x^{3}}\) | \(23\) |
risch | \(x \ln \left (2 x \right )+\frac {2 x^{5}-12 x^{4}+3}{2 x^{3}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 18, normalized size = 0.64 \begin {gather*} x^{2} + x \log \left (2 \, x\right ) - 6 \, x + \frac {3}{2 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 17, normalized size = 0.61 \begin {gather*} x\,\left (\ln \left (2\,x\right )-6\right )+x^2+\frac {3}{2\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.68 \begin {gather*} x^{2} + x \log {\left (2 x \right )} - 6 x + \frac {3}{2 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________