Optimal. Leaf size=22 \[ \frac {20 e^x}{(-3+x) \log (x) (-1+x \log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 4.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-60+20 x)+e^x \left (200 x-60 x^2\right ) \log (x)+e^x \left (60 x-100 x^2+20 x^3\right ) \log ^2(x)}{\left (9 x-6 x^2+x^3\right ) \log ^2(x)+\left (-18 x^2+12 x^3-2 x^4\right ) \log ^3(x)+\left (9 x^3-6 x^4+x^5\right ) \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 e^x \left (-3+x+(10-3 x) x \log (x)+x \left (3-5 x+x^2\right ) \log ^2(x)\right )}{(3-x)^2 x \log ^2(x) (1-x \log (x))^2} \, dx\\ &=20 \int \frac {e^x \left (-3+x+(10-3 x) x \log (x)+x \left (3-5 x+x^2\right ) \log ^2(x)\right )}{(3-x)^2 x \log ^2(x) (1-x \log (x))^2} \, dx\\ &=20 \int \left (\frac {e^x}{(-3+x) x \log ^2(x)}+\frac {e^x (4-x)}{(-3+x)^2 \log (x)}+\frac {e^x (-1-x)}{(-3+x) (-1+x \log (x))^2}+\frac {e^x (-4+x) x}{(-3+x)^2 (-1+x \log (x))}\right ) \, dx\\ &=20 \int \frac {e^x}{(-3+x) x \log ^2(x)} \, dx+20 \int \frac {e^x (4-x)}{(-3+x)^2 \log (x)} \, dx+20 \int \frac {e^x (-1-x)}{(-3+x) (-1+x \log (x))^2} \, dx+20 \int \frac {e^x (-4+x) x}{(-3+x)^2 (-1+x \log (x))} \, dx\\ &=20 \int \left (\frac {e^x}{3 (-3+x) \log ^2(x)}-\frac {e^x}{3 x \log ^2(x)}\right ) \, dx+20 \int \left (\frac {e^x}{(-3+x)^2 \log (x)}-\frac {e^x}{(-3+x) \log (x)}\right ) \, dx+20 \int \left (-\frac {e^x}{(-1+x \log (x))^2}-\frac {4 e^x}{(-3+x) (-1+x \log (x))^2}\right ) \, dx+20 \int \left (\frac {e^x}{-1+x \log (x)}-\frac {3 e^x}{(-3+x)^2 (-1+x \log (x))}+\frac {2 e^x}{(-3+x) (-1+x \log (x))}\right ) \, dx\\ &=\frac {20}{3} \int \frac {e^x}{(-3+x) \log ^2(x)} \, dx-\frac {20}{3} \int \frac {e^x}{x \log ^2(x)} \, dx+20 \int \frac {e^x}{(-3+x)^2 \log (x)} \, dx-20 \int \frac {e^x}{(-3+x) \log (x)} \, dx-20 \int \frac {e^x}{(-1+x \log (x))^2} \, dx+20 \int \frac {e^x}{-1+x \log (x)} \, dx+40 \int \frac {e^x}{(-3+x) (-1+x \log (x))} \, dx-60 \int \frac {e^x}{(-3+x)^2 (-1+x \log (x))} \, dx-80 \int \frac {e^x}{(-3+x) (-1+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 22, normalized size = 1.00 \begin {gather*} \frac {20 e^x}{(-3+x) \log (x) (-1+x \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 26, normalized size = 1.18 \begin {gather*} \frac {20 \, e^{x}}{{\left (x^{2} - 3 \, x\right )} \log \relax (x)^{2} - {\left (x - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 31, normalized size = 1.41 \begin {gather*} \frac {20 \, e^{x}}{x^{2} \log \relax (x)^{2} - 3 \, x \log \relax (x)^{2} - x \log \relax (x) + 3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.00
method | result | size |
risch | \(\frac {20 \,{\mathrm e}^{x}}{\left (x -3\right ) \left (x \ln \relax (x )-1\right ) \ln \relax (x )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 26, normalized size = 1.18 \begin {gather*} \frac {20 \, e^{x}}{{\left (x^{2} - 3 \, x\right )} \log \relax (x)^{2} - {\left (x - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.71, size = 21, normalized size = 0.95 \begin {gather*} -\frac {20\,{\mathrm {e}}^x}{\left (\ln \relax (x)-x\,{\ln \relax (x)}^2\right )\,\left (x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 31, normalized size = 1.41 \begin {gather*} \frac {20 e^{x}}{x^{2} \log {\relax (x )}^{2} - 3 x \log {\relax (x )}^{2} - x \log {\relax (x )} + 3 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________