Optimal. Leaf size=20 \[ -4+e^5+\left (-3 \left (1+e^{x/3}\right )+x\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 35, normalized size of antiderivative = 1.75, number of steps used = 4, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {2194, 2176} \begin {gather*} x^2-6 e^{x/3} x-6 x+18 e^{x/3}+9 e^{2 x/3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-6 x+x^2-2 \int e^{x/3} x \, dx+6 \int e^{2 x/3} \, dx\\ &=9 e^{2 x/3}-6 x-6 e^{x/3} x+x^2+6 \int e^{x/3} \, dx\\ &=18 e^{x/3}+9 e^{2 x/3}-6 x-6 e^{x/3} x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 30, normalized size = 1.50 \begin {gather*} 9 e^{2 x/3}-6 x+x^2-2 e^{x/3} (-9+3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 22, normalized size = 1.10 \begin {gather*} x^{2} - 6 \, {\left (x - 3\right )} e^{\left (\frac {1}{3} \, x\right )} - 6 \, x + 9 \, e^{\left (\frac {2}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 1.10 \begin {gather*} x^{2} - 6 \, {\left (x - 3\right )} e^{\left (\frac {1}{3} \, x\right )} - 6 \, x + 9 \, e^{\left (\frac {2}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 1.25
method | result | size |
risch | \(9 \,{\mathrm e}^{\frac {2 x}{3}}-2 \left (3 x -9\right ) {\mathrm e}^{\frac {x}{3}}+x^{2}-6 x\) | \(25\) |
derivativedivides | \(x^{2}-6 x +9 \,{\mathrm e}^{\frac {2 x}{3}}-6 x \,{\mathrm e}^{\frac {x}{3}}+18 \,{\mathrm e}^{\frac {x}{3}}\) | \(29\) |
default | \(x^{2}-6 x +9 \,{\mathrm e}^{\frac {2 x}{3}}-6 x \,{\mathrm e}^{\frac {x}{3}}+18 \,{\mathrm e}^{\frac {x}{3}}\) | \(29\) |
norman | \(x^{2}-6 x +9 \,{\mathrm e}^{\frac {2 x}{3}}-6 x \,{\mathrm e}^{\frac {x}{3}}+18 \,{\mathrm e}^{\frac {x}{3}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 22, normalized size = 1.10 \begin {gather*} x^{2} - 6 \, {\left (x - 3\right )} e^{\left (\frac {1}{3} \, x\right )} - 6 \, x + 9 \, e^{\left (\frac {2}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 26, normalized size = 1.30 \begin {gather*} 18\,{\mathrm {e}}^{x/3}-6\,x+9\,{\mathrm {e}}^{\frac {2\,x}{3}}-6\,x\,{\mathrm {e}}^{x/3}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 24, normalized size = 1.20 \begin {gather*} x^{2} - 6 x + \left (18 - 6 x\right ) e^{\frac {x}{3}} + 9 e^{\frac {2 x}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________