Optimal. Leaf size=26 \[ 4-e^x+3 (-1+x)+\frac {5}{\left (-3+e^x\right ) \log (\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 3.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15-5 e^x-5 e^x x \log (x) \log (\log (x))+\left (27 x-27 e^x x+9 e^{2 x} x-e^{3 x} x\right ) \log (x) \log ^2(\log (x))}{\left (9 x-6 e^x x+e^{2 x} x\right ) \log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 \left (-3+e^x\right )-x \log (x) \log (\log (x)) \left (5 e^x+\left (-3+e^x\right )^3 \log (\log (x))\right )}{\left (3-e^x\right )^2 x \log (x) \log ^2(\log (x))} \, dx\\ &=\int \left (3-e^x-\frac {15}{\left (-3+e^x\right )^2 \log (\log (x))}-\frac {5 (1+x \log (x) \log (\log (x)))}{\left (-3+e^x\right ) x \log (x) \log ^2(\log (x))}\right ) \, dx\\ &=3 x-5 \int \frac {1+x \log (x) \log (\log (x))}{\left (-3+e^x\right ) x \log (x) \log ^2(\log (x))} \, dx-15 \int \frac {1}{\left (-3+e^x\right )^2 \log (\log (x))} \, dx-\int e^x \, dx\\ &=-e^x+3 x-5 \int \left (\frac {1}{\left (-3+e^x\right ) x \log (x) \log ^2(\log (x))}+\frac {1}{\left (-3+e^x\right ) \log (\log (x))}\right ) \, dx-15 \int \frac {1}{\left (-3+e^x\right )^2 \log (\log (x))} \, dx\\ &=-e^x+3 x-5 \int \frac {1}{\left (-3+e^x\right ) x \log (x) \log ^2(\log (x))} \, dx-5 \int \frac {1}{\left (-3+e^x\right ) \log (\log (x))} \, dx-15 \int \frac {1}{\left (-3+e^x\right )^2 \log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 23, normalized size = 0.88 \begin {gather*} -e^x+3 x+\frac {5}{\left (-3+e^x\right ) \log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 35, normalized size = 1.35 \begin {gather*} \frac {{\left (3 \, {\left (x + 1\right )} e^{x} - 9 \, x - e^{\left (2 \, x\right )}\right )} \log \left (\log \relax (x)\right ) + 5}{{\left (e^{x} - 3\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 47, normalized size = 1.81 \begin {gather*} \frac {3 \, x e^{x} \log \left (\log \relax (x)\right ) - 9 \, x \log \left (\log \relax (x)\right ) - e^{\left (2 \, x\right )} \log \left (\log \relax (x)\right ) + 3 \, e^{x} \log \left (\log \relax (x)\right ) + 5}{e^{x} \log \left (\log \relax (x)\right ) - 3 \, \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.85
method | result | size |
risch | \(3 x -{\mathrm e}^{x}+\frac {5}{\ln \left (\ln \relax (x )\right ) \left ({\mathrm e}^{x}-3\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 35, normalized size = 1.35 \begin {gather*} \frac {{\left (3 \, {\left (x + 1\right )} e^{x} - 9 \, x - e^{\left (2 \, x\right )}\right )} \log \left (\log \relax (x)\right ) + 5}{{\left (e^{x} - 3\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 25, normalized size = 0.96 \begin {gather*} 3\,x-{\mathrm {e}}^x-\frac {5}{3\,\ln \left (\ln \relax (x)\right )-\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.85 \begin {gather*} 3 x - e^{x} + \frac {5}{e^{x} \log {\left (\log {\relax (x )} \right )} - 3 \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________