Optimal. Leaf size=32 \[ \frac {\log \left (\frac {\log (2)}{2 \left (x-(4+x)^2\right )}\right )}{2 \left (-3+2 x+x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.54, antiderivative size = 55, normalized size of antiderivative = 1.72, number of steps used = 44, number of rules used = 11, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6741, 12, 6728, 893, 634, 618, 204, 628, 2528, 2525, 800} \begin {gather*} -\frac {\log \left (-\frac {\log (2)}{2 \left (x^2+7 x+16\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (x^2+7 x+16\right )}\right )}{8 (x+3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 800
Rule 893
Rule 2525
Rule 2528
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {21-8 x-11 x^2-2 x^3+\left (-32-46 x-16 x^2-2 x^3\right ) \log \left (-\frac {\log (2)}{32+14 x+2 x^2}\right )}{2 \left (3-2 x-x^2\right )^2 \left (16+7 x+x^2\right )} \, dx\\ &=\frac {1}{2} \int \frac {21-8 x-11 x^2-2 x^3+\left (-32-46 x-16 x^2-2 x^3\right ) \log \left (-\frac {\log (2)}{32+14 x+2 x^2}\right )}{\left (3-2 x-x^2\right )^2 \left (16+7 x+x^2\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {21}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )}-\frac {8 x}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )}-\frac {11 x^2}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )}-\frac {2 x^3}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )}-\frac {2 (1+x) \log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{(-1+x)^2 (3+x)^2}\right ) \, dx\\ &=-\left (4 \int \frac {x}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )} \, dx\right )-\frac {11}{2} \int \frac {x^2}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )} \, dx+\frac {21}{2} \int \frac {1}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )} \, dx-\int \frac {x^3}{(-1+x)^2 (3+x)^2 \left (16+7 x+x^2\right )} \, dx-\int \frac {(1+x) \log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{(-1+x)^2 (3+x)^2} \, dx\\ &=-\left (4 \int \left (\frac {1}{384 (-1+x)^2}+\frac {1}{3072 (-1+x)}-\frac {3}{64 (3+x)^2}+\frac {1}{256 (3+x)}+\frac {80-13 x}{3072 \left (16+7 x+x^2\right )}\right ) \, dx\right )-\frac {11}{2} \int \left (\frac {1}{384 (-1+x)^2}+\frac {3}{1024 (-1+x)}+\frac {9}{64 (3+x)^2}-\frac {15}{256 (3+x)}+\frac {208+171 x}{3072 \left (16+7 x+x^2\right )}\right ) \, dx+\frac {21}{2} \int \left (\frac {1}{384 (-1+x)^2}-\frac {7}{3072 (-1+x)}+\frac {1}{64 (3+x)^2}+\frac {1}{256 (3+x)}+\frac {-48-5 x}{3072 \left (16+7 x+x^2\right )}\right ) \, dx-\int \left (\frac {1}{384 (-1+x)^2}+\frac {17}{3072 (-1+x)}-\frac {27}{64 (3+x)^2}+\frac {81}{256 (3+x)}+\frac {-2736-989 x}{3072 \left (16+7 x+x^2\right )}\right ) \, dx-\int \left (\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (-1+x)^2}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)^2}\right ) \, dx\\ &=-\frac {3}{64} \log (1-x)+\frac {1}{32} \log (3+x)-\frac {\int \frac {-2736-989 x}{16+7 x+x^2} \, dx}{3072}-\frac {1}{768} \int \frac {80-13 x}{16+7 x+x^2} \, dx-\frac {11 \int \frac {208+171 x}{16+7 x+x^2} \, dx}{6144}+\frac {7 \int \frac {-48-5 x}{16+7 x+x^2} \, dx}{2048}-\frac {1}{8} \int \frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{(-1+x)^2} \, dx+\frac {1}{8} \int \frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{(3+x)^2} \, dx\\ &=-\frac {3}{64} \log (1-x)+\frac {1}{32} \log (3+x)-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)}+\frac {13 \int \frac {7+2 x}{16+7 x+x^2} \, dx}{1536}-\frac {35 \int \frac {7+2 x}{16+7 x+x^2} \, dx}{4096}-\frac {427 \int \frac {1}{16+7 x+x^2} \, dx}{4096}+\frac {1}{8} \int \frac {7+2 x}{(-1+x) \left (16+7 x+x^2\right )} \, dx-\frac {1}{8} \int \frac {7+2 x}{(3+x) \left (16+7 x+x^2\right )} \, dx-\frac {627 \int \frac {7+2 x}{16+7 x+x^2} \, dx}{4096}+\frac {989 \int \frac {7+2 x}{16+7 x+x^2} \, dx}{6144}-\frac {251 \int \frac {1}{16+7 x+x^2} \, dx}{1536}-\frac {1451 \int \frac {1}{16+7 x+x^2} \, dx}{6144}+\frac {8591 \int \frac {1}{16+7 x+x^2} \, dx}{12288}\\ &=-\frac {3}{64} \log (1-x)+\frac {1}{32} \log (3+x)+\frac {1}{128} \log \left (16+7 x+x^2\right )-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)}+\frac {1}{8} \int \left (\frac {3}{8 (-1+x)}+\frac {-8-3 x}{8 \left (16+7 x+x^2\right )}\right ) \, dx-\frac {1}{8} \int \left (\frac {1}{4 (3+x)}+\frac {4-x}{4 \left (16+7 x+x^2\right )}\right ) \, dx+\frac {427 \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )}{2048}+\frac {251}{768} \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )+\frac {1451 \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )}{3072}-\frac {8591 \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )}{6144}\\ &=\frac {5}{64} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {7+2 x}{\sqrt {15}}\right )+\frac {1}{128} \log \left (16+7 x+x^2\right )-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)}+\frac {1}{64} \int \frac {-8-3 x}{16+7 x+x^2} \, dx-\frac {1}{32} \int \frac {4-x}{16+7 x+x^2} \, dx\\ &=\frac {5}{64} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {7+2 x}{\sqrt {15}}\right )+\frac {1}{128} \log \left (16+7 x+x^2\right )-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)}+\frac {1}{64} \int \frac {7+2 x}{16+7 x+x^2} \, dx-\frac {3}{128} \int \frac {7+2 x}{16+7 x+x^2} \, dx+\frac {5}{128} \int \frac {1}{16+7 x+x^2} \, dx-\frac {15}{64} \int \frac {1}{16+7 x+x^2} \, dx\\ &=\frac {5}{64} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {7+2 x}{\sqrt {15}}\right )-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)}-\frac {5}{64} \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )+\frac {15}{32} \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )\\ &=-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (1-x)}-\frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{8 (3+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 31, normalized size = 0.97 \begin {gather*} \frac {\log \left (-\frac {\log (2)}{2 \left (16+7 x+x^2\right )}\right )}{2 \left (-3+2 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 27, normalized size = 0.84 \begin {gather*} \frac {\log \left (-\frac {\log \relax (2)}{2 \, {\left (x^{2} + 7 \, x + 16\right )}}\right )}{2 \, {\left (x^{2} + 2 \, x - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 44, normalized size = 1.38 \begin {gather*} -\frac {\log \relax (2) - \log \left (-\log \relax (2)\right )}{2 \, {\left (x^{2} + 2 \, x - 3\right )}} - \frac {\log \left (x^{2} + 7 \, x + 16\right )}{2 \, {\left (x^{2} + 2 \, x - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 30, normalized size = 0.94
method | result | size |
norman | \(\frac {\ln \left (-\frac {\ln \relax (2)}{2 x^{2}+14 x +32}\right )}{2 x^{2}+4 x -6}\) | \(30\) |
risch | \(\frac {\ln \left (-\frac {\ln \relax (2)}{2 x^{2}+14 x +32}\right )}{2 x^{2}+4 x -6}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.59, size = 122, normalized size = 3.81 \begin {gather*} -\frac {{\left (x^{2} + 2 \, x + 61\right )} \log \left (-x^{2} - 7 \, x - 16\right ) + 64 \, \log \relax (2) - 64 \, \log \left (\log \relax (2)\right )}{128 \, {\left (x^{2} + 2 \, x - 3\right )}} - \frac {161 \, x - 165}{384 \, {\left (x^{2} + 2 \, x - 3\right )}} + \frac {11 \, {\left (55 \, x - 51\right )}}{768 \, {\left (x^{2} + 2 \, x - 3\right )}} - \frac {17 \, x - 21}{96 \, {\left (x^{2} + 2 \, x - 3\right )}} - \frac {7 \, {\left (7 \, x - 3\right )}}{256 \, {\left (x^{2} + 2 \, x - 3\right )}} + \frac {1}{128} \, \log \left (x^{2} + 7 \, x + 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 34, normalized size = 1.06 \begin {gather*} \frac {\ln \left (\ln \relax (2)\right )-\ln \left (2\,x^2+14\,x+32\right )+\pi \,1{}\mathrm {i}}{2\,\left (x^2+2\,x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 26, normalized size = 0.81 \begin {gather*} \frac {\log {\left (- \frac {\log {\relax (2 )}}{2 x^{2} + 14 x + 32} \right )}}{2 x^{2} + 4 x - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________