Optimal. Leaf size=21 \[ \left (4+x+\left (e^x+\log \left (4 e^3 x\right )\right )^2\right ) \log (5+x) \]
________________________________________________________________________________________
Rubi [C] time = 5.03, antiderivative size = 122, normalized size of antiderivative = 5.81, number of steps used = 49, number of rules used = 23, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {1593, 6742, 43, 2317, 2374, 6589, 2390, 2301, 2411, 2346, 2295, 2433, 2425, 2344, 2391, 2375, 2288, 6688, 2178, 2554, 12, 2194, 2557} \begin {gather*} \frac {6 \text {Ei}(x+5)}{e^5}-\frac {2 \text {Ei}(x+5) \log (x)}{e^5}+\frac {2 \text {Ei}(x+5) \log (4 x)}{e^5}-\frac {2 (3+\log (4)) \text {Ei}(x+5)}{e^5}+\log (x+5) (\log (x)+3+\log (4))^2+(x+5) \log (x+5)+2 e^x \log (x) \log (x+5)+2 e^x (3+\log (4)) \log (x+5)-\log (x+5)+\frac {e^{2 x} (x \log (x+5)+5 \log (x+5))}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 1593
Rule 2178
Rule 2194
Rule 2288
Rule 2295
Rule 2301
Rule 2317
Rule 2344
Rule 2346
Rule 2374
Rule 2375
Rule 2390
Rule 2391
Rule 2411
Rule 2425
Rule 2433
Rule 2554
Rule 2557
Rule 6589
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+e^{2 x} x+x^2+x \log ^2\left (4 e^3 x\right )+\left (5 x+x^2+e^x (10+2 x)+e^{2 x} \left (10 x+2 x^2\right )\right ) \log (5+x)+\log \left (4 e^3 x\right ) \left (2 e^x x+\left (10+2 x+e^x \left (10 x+2 x^2\right )\right ) \log (5+x)\right )}{x (5+x)} \, dx\\ &=\int \left (\frac {4}{5+x}+\frac {x}{5+x}+\frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right )^2}{5+x}+\frac {5 \log (5+x)}{5+x}+\frac {x \log (5+x)}{5+x}+\frac {2 \left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right ) \log (5+x)}{5+x}+\frac {10 \left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right ) \log (5+x)}{x (5+x)}+\frac {e^{2 x} (1+10 \log (5+x)+2 x \log (5+x))}{5+x}+\frac {2 e^x \left (3 x \left (1+\frac {2 \log (2)}{3}\right )+x \log (x)+5 \log (5+x)+16 x \left (1+\frac {5 \log (2)}{8}\right ) \log (5+x)+3 x^2 \left (1+\frac {2 \log (2)}{3}\right ) \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right )}{x (5+x)}\right ) \, dx\\ &=4 \log (5+x)+2 \int \frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right ) \log (5+x)}{5+x} \, dx+2 \int \frac {e^x \left (3 x \left (1+\frac {2 \log (2)}{3}\right )+x \log (x)+5 \log (5+x)+16 x \left (1+\frac {5 \log (2)}{8}\right ) \log (5+x)+3 x^2 \left (1+\frac {2 \log (2)}{3}\right ) \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right )}{x (5+x)} \, dx+5 \int \frac {\log (5+x)}{5+x} \, dx+10 \int \frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right ) \log (5+x)}{x (5+x)} \, dx+\int \frac {x}{5+x} \, dx+\int \frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right )^2}{5+x} \, dx+\int \frac {x \log (5+x)}{5+x} \, dx+\int \frac {e^{2 x} (1+10 \log (5+x)+2 x \log (5+x))}{5+x} \, dx\\ &=\log \left (1+\frac {x}{5}\right ) (3+\log (4)+\log (x))^2+4 \log (5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}-2 \int \frac {\log \left (1+\frac {x}{5}\right ) \left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right )}{x} \, dx+2 \int \frac {e^x \left (x (3+\log (4))+\left (5+x^2 (3+\log (4))+2 x (8+\log (32))\right ) \log (5+x)+\log (x) (x+x (5+x) \log (5+x))\right )}{x (5+x)} \, dx+2 \operatorname {Subst}\left (\int \frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (-5+x)\right ) \log (x)}{x} \, dx,x,5+x\right )+5 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,5+x\right )+10 \int \left (\frac {\left (-3 \left (1+\frac {2 \log (2)}{3}\right )-\log (x)\right ) \log (5+x)}{5 (5+x)}+\frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right ) \log (5+x)}{5 x}\right ) \, dx+\int \left (1-\frac {5}{5+x}\right ) \, dx+\operatorname {Subst}\left (\int \frac {(-5+x) \log (x)}{x} \, dx,x,5+x\right )\\ &=x+\log \left (1+\frac {x}{5}\right ) (3+\log (4)+\log (x))^2-\log (5+x)+\frac {5}{2} \log ^2(5+x)+(3+\log (4)+\log (x)) \log ^2(5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}+2 (3+\log (4)+\log (x)) \text {Li}_2\left (-\frac {x}{5}\right )+2 \int \frac {\left (-3 \left (1+\frac {2 \log (2)}{3}\right )-\log (x)\right ) \log (5+x)}{5+x} \, dx+2 \int \frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right ) \log (5+x)}{x} \, dx+2 \int \left (\frac {e^x (3+\log (4 x))}{5+x}+\frac {e^x \left (5+16 x \left (1+\frac {5 \log (2)}{8}\right )+3 x^2 \left (1+\frac {2 \log (2)}{3}\right )+5 x \log (x)+x^2 \log (x)\right ) \log (5+x)}{x (5+x)}\right ) \, dx-2 \int \frac {\text {Li}_2\left (-\frac {x}{5}\right )}{x} \, dx-5 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,5+x\right )+\operatorname {Subst}(\int \log (x) \, dx,x,5+x)-\operatorname {Subst}\left (\int \frac {\log ^2(x)}{-5+x} \, dx,x,5+x\right )\\ &=\log \left (1+\frac {x}{5}\right ) (3+\log (4)+\log (x))^2-\log (5+x)+(5+x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)-\log \left (-\frac {x}{5}\right ) \log ^2(5+x)+(3+\log (4)+\log (x)) \log ^2(5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}+2 (3+\log (4)+\log (x)) \text {Li}_2\left (-\frac {x}{5}\right )-2 \text {Li}_3\left (-\frac {x}{5}\right )+2 \int \frac {e^x (3+\log (4 x))}{5+x} \, dx+2 \int \frac {e^x \left (5+16 x \left (1+\frac {5 \log (2)}{8}\right )+3 x^2 \left (1+\frac {2 \log (2)}{3}\right )+5 x \log (x)+x^2 \log (x)\right ) \log (5+x)}{x (5+x)} \, dx+2 \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{5}\right ) \log (x)}{x} \, dx,x,5+x\right )+2 \operatorname {Subst}\left (\int \frac {\left (-3 \left (1+\frac {2 \log (2)}{3}\right )-\log (-5+x)\right ) \log (x)}{x} \, dx,x,5+x\right )-\int \frac {\left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right )^2}{5+x} \, dx\\ &=-\log (5+x)+(5+x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)-\log \left (-\frac {x}{5}\right ) \log ^2(5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}+2 (3+\log (4)+\log (x)) \text {Li}_2\left (-\frac {x}{5}\right )-2 \log (5+x) \text {Li}_2\left (\frac {5+x}{5}\right )-2 \text {Li}_3\left (-\frac {x}{5}\right )+2 \int \frac {\log \left (1+\frac {x}{5}\right ) \left (3 \left (1+\frac {2 \log (2)}{3}\right )+\log (x)\right )}{x} \, dx+2 \int \left (\frac {3 e^x}{5+x}+\frac {e^x \log (4 x)}{5+x}\right ) \, dx+2 \int \frac {e^x (1+x (3+\log (4))+x \log (x)) \log (5+x)}{x} \, dx+2 \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (\frac {x}{5}\right )}{x} \, dx,x,5+x\right )+\operatorname {Subst}\left (\int \frac {\log ^2(x)}{-5+x} \, dx,x,5+x\right )\\ &=-\log (5+x)+(5+x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}-2 \log (5+x) \text {Li}_2\left (\frac {5+x}{5}\right )-2 \text {Li}_3\left (-\frac {x}{5}\right )+2 \text {Li}_3\left (\frac {5+x}{5}\right )+2 \int \frac {e^x \log (4 x)}{5+x} \, dx+2 \int \left (\frac {e^x \log (5+x)}{x}+e^x (3+\log (4)) \log (5+x)+e^x \log (x) \log (5+x)\right ) \, dx+2 \int \frac {\text {Li}_2\left (-\frac {x}{5}\right )}{x} \, dx-2 \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{5}\right ) \log (x)}{x} \, dx,x,5+x\right )+6 \int \frac {e^x}{5+x} \, dx\\ &=\frac {6 \text {Ei}(5+x)}{e^5}+\frac {2 \text {Ei}(5+x) \log (4 x)}{e^5}-\log (5+x)+(5+x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}+2 \text {Li}_3\left (\frac {5+x}{5}\right )-2 \int \frac {\text {Ei}(5+x)}{e^5 x} \, dx+2 \int \frac {e^x \log (5+x)}{x} \, dx+2 \int e^x \log (x) \log (5+x) \, dx-2 \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (\frac {x}{5}\right )}{x} \, dx,x,5+x\right )+(2 (3+\log (4))) \int e^x \log (5+x) \, dx\\ &=\frac {6 \text {Ei}(5+x)}{e^5}+\frac {2 \text {Ei}(5+x) \log (4 x)}{e^5}-\log (5+x)+(5+x) \log (5+x)+2 \text {Ei}(x) \log (5+x)+2 e^x (3+\log (4)) \log (5+x)+2 e^x \log (x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}-2 \int \frac {\text {Ei}(x)}{5+x} \, dx-2 \int \frac {e^x \log (x)}{5+x} \, dx-2 \int \frac {e^x \log (5+x)}{x} \, dx-\frac {2 \int \frac {\text {Ei}(5+x)}{x} \, dx}{e^5}-(2 (3+\log (4))) \int \frac {e^x}{5+x} \, dx\\ &=\frac {6 \text {Ei}(5+x)}{e^5}-\frac {2 \text {Ei}(5+x) (3+\log (4))}{e^5}-\frac {2 \text {Ei}(5+x) \log (x)}{e^5}+\frac {2 \text {Ei}(5+x) \log (4 x)}{e^5}-\log (5+x)+(5+x) \log (5+x)+2 e^x (3+\log (4)) \log (5+x)+2 e^x \log (x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}+2 \int \frac {\text {Ei}(5+x)}{e^5 x} \, dx-\frac {2 \int \frac {\text {Ei}(5+x)}{x} \, dx}{e^5}\\ &=\frac {6 \text {Ei}(5+x)}{e^5}-\frac {2 \text {Ei}(5+x) (3+\log (4))}{e^5}-\frac {2 \text {Ei}(5+x) \log (x)}{e^5}+\frac {2 \text {Ei}(5+x) \log (4 x)}{e^5}-\log (5+x)+(5+x) \log (5+x)+2 e^x (3+\log (4)) \log (5+x)+2 e^x \log (x) \log (5+x)+(3+\log (4)+\log (x))^2 \log (5+x)+\frac {e^{2 x} (5 \log (5+x)+x \log (5+x))}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 45, normalized size = 2.14 \begin {gather*} \left (13+e^{2 x}+x+6 \log (4)+\log ^2(4)+e^x (6+\log (16))+\left (6+2 e^x+\log (16)\right ) \log (x)+\log ^2(x)\right ) \log (5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 40, normalized size = 1.90 \begin {gather*} 2 \, e^{x} \log \left (4 \, x e^{3}\right ) \log \left (x + 5\right ) + \log \left (4 \, x e^{3}\right )^{2} \log \left (x + 5\right ) + {\left (x + e^{\left (2 \, x\right )} + 4\right )} \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.02, size = 95, normalized size = 4.52 \begin {gather*} 4 \, e^{x} \log \relax (2) \log \left (x + 5\right ) + 4 \, \log \relax (2)^{2} \log \left (x + 5\right ) + 2 \, e^{x} \log \left (x + 5\right ) \log \relax (x) + 4 \, \log \relax (2) \log \left (x + 5\right ) \log \relax (x) + \log \left (x + 5\right ) \log \relax (x)^{2} + x \log \left (x + 5\right ) + e^{\left (2 \, x\right )} \log \left (x + 5\right ) + 6 \, e^{x} \log \left (x + 5\right ) + 12 \, \log \relax (2) \log \left (x + 5\right ) + 6 \, \log \left (x + 5\right ) \log \relax (x) + 13 \, \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.17, size = 50, normalized size = 2.38
method | result | size |
risch | \(\ln \left (5+x \right ) \ln \left (4 x \,{\mathrm e}^{3}\right )^{2}+2 \,{\mathrm e}^{x} \ln \left (5+x \right ) \ln \left (4 x \,{\mathrm e}^{3}\right )+{\mathrm e}^{2 x} \ln \left (5+x \right )+x \ln \left (5+x \right )+4 \ln \left (5+x \right )\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -e^{\left (-10\right )} E_{1}\left (-2 \, x - 10\right ) + {\left (2 \, {\left (2 \, \log \relax (2) + \log \relax (x) + 3\right )} e^{x} + 4 \, \log \relax (2)^{2} + 2 \, {\left (2 \, \log \relax (2) + 3\right )} \log \relax (x) + \log \relax (x)^{2} + x + e^{\left (2 \, x\right )} + 12 \, \log \relax (2) + 14\right )} \log \left (x + 5\right ) - \int \frac {e^{\left (2 \, x\right )}}{x + 5}\,{d x} - \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {4\,x+x\,{\mathrm {e}}^{2\,x}+\ln \left (x+5\right )\,\left (5\,x+{\mathrm {e}}^{2\,x}\,\left (2\,x^2+10\,x\right )+{\mathrm {e}}^x\,\left (2\,x+10\right )+x^2\right )+\ln \left (4\,x\,{\mathrm {e}}^3\right )\,\left (\ln \left (x+5\right )\,\left (2\,x+{\mathrm {e}}^x\,\left (2\,x^2+10\,x\right )+10\right )+2\,x\,{\mathrm {e}}^x\right )+x^2+x\,{\ln \left (4\,x\,{\mathrm {e}}^3\right )}^2}{x^2+5\,x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.19, size = 56, normalized size = 2.67 \begin {gather*} x \log {\left (x + 5 \right )} + e^{2 x} \log {\left (x + 5 \right )} + 2 e^{x} \log {\left (4 x e^{3} \right )} \log {\left (x + 5 \right )} + \log {\left (4 x e^{3} \right )}^{2} \log {\left (x + 5 \right )} + 4 \log {\left (x + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________