Optimal. Leaf size=14 \[ \log \left (15-e^2+\frac {2}{x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 20, normalized size of antiderivative = 1.43, number of steps used = 5, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {6, 1594, 1628, 628} \begin {gather*} \log \left (x^2+\left (15-e^2\right ) x+2\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 628
Rule 1594
Rule 1628
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-x^2}{-2 x+\left (-15+e^2\right ) x^2-x^3} \, dx\\ &=\int \frac {2-x^2}{x \left (-2+\left (-15+e^2\right ) x-x^2\right )} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {15-e^2+2 x}{2+\left (15-e^2\right ) x+x^2}\right ) \, dx\\ &=-\log (x)+\int \frac {15-e^2+2 x}{2+\left (15-e^2\right ) x+x^2} \, dx\\ &=-\log (x)+\log \left (2+\left (15-e^2\right ) x+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 1.43 \begin {gather*} -\log (x)+\log \left (2+15 x-e^2 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 19, normalized size = 1.36 \begin {gather*} \log \left (x^{2} - x e^{2} + 15 \, x + 2\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.50 \begin {gather*} \log \left ({\left | x^{2} - x e^{2} + 15 \, x + 2 \right |}\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 1.43
method | result | size |
default | \(\ln \left (-{\mathrm e}^{2} x +x^{2}+15 x +2\right )-\ln \relax (x )\) | \(20\) |
norman | \(-\ln \relax (x )+\ln \left ({\mathrm e}^{2} x -x^{2}-15 x -2\right )\) | \(21\) |
risch | \(-\ln \left (-x \right )+\ln \left (2+x^{2}+\left (-{\mathrm e}^{2}+15\right ) x \right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 18, normalized size = 1.29 \begin {gather*} \log \left (x^{2} - x {\left (e^{2} - 15\right )} + 2\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.34, size = 19, normalized size = 1.36 \begin {gather*} \ln \left (15\,x-x\,{\mathrm {e}}^2+x^2+2\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 1.07 \begin {gather*} - \log {\relax (x )} + \log {\left (x^{2} + x \left (15 - e^{2}\right ) + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________