Optimal. Leaf size=34 \[ \left (1+x^2\right ) \left (x-\frac {(4+x)^2}{2+\frac {4}{x}-x}\right )-\log (5) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 39, normalized size of antiderivative = 1.15, number of steps used = 7, number of rules used = 4, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {2074, 638, 618, 206} \begin {gather*} 2 x^3+10 x^2-\frac {40 (11 x+13)}{-x^2+2 x+4}+42 x-\log (5) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (42+20 x+6 x^2-\frac {80 (31+24 x)}{\left (-4-2 x+x^2\right )^2}-\frac {440}{-4-2 x+x^2}-\frac {\log (5)}{x}\right ) \, dx\\ &=42 x+10 x^2+2 x^3-\log (5) \log (x)-80 \int \frac {31+24 x}{\left (-4-2 x+x^2\right )^2} \, dx-440 \int \frac {1}{-4-2 x+x^2} \, dx\\ &=42 x+10 x^2+2 x^3-\frac {40 (13+11 x)}{4+2 x-x^2}-\log (5) \log (x)+440 \int \frac {1}{-4-2 x+x^2} \, dx+880 \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,-2+2 x\right )\\ &=42 x+10 x^2+2 x^3-\frac {40 (13+11 x)}{4+2 x-x^2}-88 \sqrt {5} \tanh ^{-1}\left (\frac {1-x}{\sqrt {5}}\right )-\log (5) \log (x)-880 \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,-2+2 x\right )\\ &=42 x+10 x^2+2 x^3-\frac {40 (13+11 x)}{4+2 x-x^2}-\log (5) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 37, normalized size = 1.09 \begin {gather*} 42 x+10 x^2+2 x^3+\frac {40 (13+11 x)}{-4-2 x+x^2}-\log (5) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 50, normalized size = 1.47 \begin {gather*} \frac {2 \, x^{5} + 6 \, x^{4} + 14 \, x^{3} - {\left (x^{2} - 2 \, x - 4\right )} \log \relax (5) \log \relax (x) - 124 \, x^{2} + 272 \, x + 520}{x^{2} - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 38, normalized size = 1.12 \begin {gather*} 2 \, x^{3} + 10 \, x^{2} - \log \relax (5) \log \left ({\left | x \right |}\right ) + 42 \, x + \frac {40 \, {\left (11 \, x + 13\right )}}{x^{2} - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 37, normalized size = 1.09
method | result | size |
risch | \(2 x^{3}+10 x^{2}+42 x +\frac {440 x +520}{x^{2}-2 x -4}-\ln \relax (5) \ln \relax (x )\) | \(37\) |
default | \(2 x^{3}+10 x^{2}+42 x -\ln \relax (5) \ln \relax (x )-\frac {40 \left (-11 x -13\right )}{x^{2}-2 x -4}\) | \(38\) |
norman | \(\frac {2 x^{5}+6 x^{4}+14 x^{3}+24 x +24}{x^{2}-2 x -4}-\ln \relax (5) \ln \relax (x )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 37, normalized size = 1.09 \begin {gather*} 2 \, x^{3} + 10 \, x^{2} - \log \relax (5) \log \relax (x) + 42 \, x + \frac {40 \, {\left (11 \, x + 13\right )}}{x^{2} - 2 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 325, normalized size = 9.56 \begin {gather*} 42\,x-\ln \relax (5)\,\ln \relax (x)+10\,x^2+2\,x^3-\frac {\frac {16\,\ln \relax (5)}{5}-\frac {4\,\ln \left (625\right )}{5}+x\,\left (\frac {14\,\ln \relax (5)}{5}-\frac {7\,\ln \left (625\right )}{10}+440\right )+520}{-x^2+2\,x+4}-\frac {\sqrt {5}\,\mathrm {atan}\left (\frac {\frac {\sqrt {5}\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )\,\left (\frac {64\,\ln \relax (5)}{5}-\frac {6\,\ln \left (625\right )}{5}+x\,\left (\frac {72\,\ln \relax (5)}{5}-\frac {3\,\ln \left (625\right )}{5}\right )-\frac {3\,\sqrt {5}\,\left (32\,x+8\right )\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )}{100}\right )\,3{}\mathrm {i}}{100}+\frac {\sqrt {5}\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )\,\left (\frac {64\,\ln \relax (5)}{5}-\frac {6\,\ln \left (625\right )}{5}+x\,\left (\frac {72\,\ln \relax (5)}{5}-\frac {3\,\ln \left (625\right )}{5}\right )+\frac {3\,\sqrt {5}\,\left (32\,x+8\right )\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )}{100}\right )\,3{}\mathrm {i}}{100}}{2\,x\,\left (\frac {3\,\ln \relax (5)\,\ln \left (625\right )}{25}+\frac {24\,{\ln \relax (5)}^2}{25}-\frac {9\,{\ln \left (625\right )}^2}{100}\right )-\frac {12\,\ln \relax (5)\,\ln \left (625\right )}{5}+\frac {48\,{\ln \relax (5)}^2}{5}-\frac {3\,\sqrt {5}\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )\,\left (\frac {64\,\ln \relax (5)}{5}-\frac {6\,\ln \left (625\right )}{5}+x\,\left (\frac {72\,\ln \relax (5)}{5}-\frac {3\,\ln \left (625\right )}{5}\right )-\frac {3\,\sqrt {5}\,\left (32\,x+8\right )\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )}{100}\right )}{100}+\frac {3\,\sqrt {5}\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )\,\left (\frac {64\,\ln \relax (5)}{5}-\frac {6\,\ln \left (625\right )}{5}+x\,\left (\frac {72\,\ln \relax (5)}{5}-\frac {3\,\ln \left (625\right )}{5}\right )+\frac {3\,\sqrt {5}\,\left (32\,x+8\right )\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )}{100}\right )}{100}}\right )\,\left (4\,\ln \relax (5)-\ln \left (625\right )\right )\,3{}\mathrm {i}}{50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 32, normalized size = 0.94 \begin {gather*} 2 x^{3} + 10 x^{2} + 42 x + \frac {440 x + 520}{x^{2} - 2 x - 4} - \log {\relax (5 )} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________