Optimal. Leaf size=22 \[ x+e^{28} \left (-e^{e^x}+e^{x^2}\right ) x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+e^{16} x^2 \left (e^{e^x} \left (-2 e^{12}-e^{12+x} x\right )+e^{12+x^2} \left (2+2 x^2\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-2 e^{28+e^x} x-e^{28+e^x+x} x^2+2 e^{28+x^2} x \left (1+x^2\right )\right ) \, dx\\ &=x-2 \int e^{28+e^x} x \, dx+2 \int e^{28+x^2} x \left (1+x^2\right ) \, dx-\int e^{28+e^x+x} x^2 \, dx\\ &=x-2 \int e^{28+e^x} x \, dx+2 \int \left (e^{28+x^2} x+e^{28+x^2} x^3\right ) \, dx-\int e^{28+e^x+x} x^2 \, dx\\ &=x-2 \int e^{28+e^x} x \, dx+2 \int e^{28+x^2} x \, dx+2 \int e^{28+x^2} x^3 \, dx-\int e^{28+e^x+x} x^2 \, dx\\ &=e^{28+x^2}+x+e^{28+x^2} x^2-2 \int e^{28+e^x} x \, dx-2 \int e^{28+x^2} x \, dx-\int e^{28+e^x+x} x^2 \, dx\\ &=x+e^{28+x^2} x^2-2 \int e^{28+e^x} x \, dx-\int e^{28+e^x+x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 25, normalized size = 1.14 \begin {gather*} x-e^{28+e^x} x^2+e^{28+x^2} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 22, normalized size = 1.00 \begin {gather*} x^{2} e^{\left (x^{2} + 28\right )} - x^{2} e^{\left (e^{x} + 28\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 32, normalized size = 1.45 \begin {gather*} {\left (x^{2} e^{\left (x^{2} + x + 28\right )} - x^{2} e^{\left (x + e^{x} + 28\right )} + x e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 53, normalized size = 2.41
method | result | size |
risch | \(x -x^{2} \left ({\mathrm e}^{x^{2}}-{\mathrm e}^{{\mathrm e}^{x}}\right ) {\mathrm e}^{28} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 34, normalized size = 1.55 \begin {gather*} -x^{2} e^{\left (e^{x} + 28\right )} + {\left (x^{2} e^{28} - e^{28}\right )} e^{\left (x^{2}\right )} + x + e^{\left (x^{2} + 28\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.28, size = 22, normalized size = 1.00 \begin {gather*} x+x^2\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{28}-x^2\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{28} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 1.09 \begin {gather*} x^{2} e^{28} e^{x^{2}} - x^{2} e^{28} e^{e^{x}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________