Optimal. Leaf size=25 \[ -4+e^x-x+\frac {e^{\frac {x^2}{6}}}{e+2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 36, normalized size of antiderivative = 1.44, number of steps used = 7, number of rules used = 5, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {27, 12, 6742, 2194, 2288} \begin {gather*} \frac {e^{\frac {x^2}{6}} \left (2 x^2+e x\right )}{(2 x+e)^2 x}-x+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2194
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 e^2-12 e x-12 x^2+e^{\frac {x^2}{6}} \left (-6+e x+2 x^2\right )+e^x \left (3 e^2+12 e x+12 x^2\right )}{3 (e+2 x)^2} \, dx\\ &=\frac {1}{3} \int \frac {-3 e^2-12 e x-12 x^2+e^{\frac {x^2}{6}} \left (-6+e x+2 x^2\right )+e^x \left (3 e^2+12 e x+12 x^2\right )}{(e+2 x)^2} \, dx\\ &=\frac {1}{3} \int \left (3 \left (-1+e^x\right )+\frac {e^{\frac {x^2}{6}} \left (-6+e x+2 x^2\right )}{(e+2 x)^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {x^2}{6}} \left (-6+e x+2 x^2\right )}{(e+2 x)^2} \, dx+\int \left (-1+e^x\right ) \, dx\\ &=-x+\frac {e^{\frac {x^2}{6}} \left (e x+2 x^2\right )}{x (e+2 x)^2}+\int e^x \, dx\\ &=e^x-x+\frac {e^{\frac {x^2}{6}} \left (e x+2 x^2\right )}{x (e+2 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.96 \begin {gather*} e^x-x+\frac {e^{\frac {x^2}{6}}}{e+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 38, normalized size = 1.52 \begin {gather*} -\frac {2 \, x^{2} + x e - {\left (2 \, x + e\right )} e^{x} - e^{\left (\frac {1}{6} \, x^{2}\right )}}{2 \, x + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 39, normalized size = 1.56 \begin {gather*} -\frac {2 \, x^{2} + x e - 2 \, x e^{x} - e^{\left (\frac {1}{6} \, x^{2}\right )} - e^{\left (x + 1\right )}}{2 \, x + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 22, normalized size = 0.88
method | result | size |
risch | \(-x +{\mathrm e}^{x}+\frac {{\mathrm e}^{\frac {x^{2}}{6}}}{{\mathrm e}+2 x}\) | \(22\) |
norman | \(\frac {{\mathrm e} \,{\mathrm e}^{x}-2 x^{2}+2 \,{\mathrm e}^{x} x +\frac {{\mathrm e}^{2}}{2}+{\mathrm e}^{\frac {x^{2}}{6}}}{{\mathrm e}+2 x}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 73, normalized size = 2.92 \begin {gather*} -{\left (\frac {e}{2 \, x + e} + \log \left (2 \, x + e\right )\right )} e + e \log \left (2 \, x + e\right ) - x + \frac {{\left (2 \, x + e\right )} e^{x} + e^{\left (\frac {1}{6} \, x^{2}\right )}}{2 \, x + e} + \frac {e^{2}}{2 \, x + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 21, normalized size = 0.84 \begin {gather*} {\mathrm {e}}^x-x+\frac {{\mathrm {e}}^{\frac {x^2}{6}}}{2\,\left (x+\frac {\mathrm {e}}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.68 \begin {gather*} - x + e^{x} + \frac {e^{\frac {x^{2}}{6}}}{2 x + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________