Optimal. Leaf size=22 \[ x+x \left (x-\frac {1}{2} \left (e^{-6+2 x}+\frac {1}{x}\right ) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {12, 1593, 2196, 2176, 2194} \begin {gather*} -\frac {1}{2} e^{2 x-6} x^2+x^2+\frac {x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (1+4 x+e^{-6+2 x} \left (-2 x-2 x^2\right )\right ) \, dx\\ &=\frac {x}{2}+x^2+\frac {1}{2} \int e^{-6+2 x} \left (-2 x-2 x^2\right ) \, dx\\ &=\frac {x}{2}+x^2+\frac {1}{2} \int e^{-6+2 x} (-2-2 x) x \, dx\\ &=\frac {x}{2}+x^2+\frac {1}{2} \int \left (-2 e^{-6+2 x} x-2 e^{-6+2 x} x^2\right ) \, dx\\ &=\frac {x}{2}+x^2-\int e^{-6+2 x} x \, dx-\int e^{-6+2 x} x^2 \, dx\\ &=\frac {x}{2}-\frac {1}{2} e^{-6+2 x} x+x^2-\frac {1}{2} e^{-6+2 x} x^2+\frac {1}{2} \int e^{-6+2 x} \, dx+\int e^{-6+2 x} x \, dx\\ &=\frac {1}{4} e^{-6+2 x}+\frac {x}{2}+x^2-\frac {1}{2} e^{-6+2 x} x^2-\frac {1}{2} \int e^{-6+2 x} \, dx\\ &=\frac {x}{2}+x^2-\frac {1}{2} e^{-6+2 x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 23, normalized size = 1.05 \begin {gather*} \frac {x}{2}+x^2-\frac {1}{2} e^{-6+2 x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 18, normalized size = 0.82 \begin {gather*} -\frac {1}{2} \, x^{2} e^{\left (2 \, x - 6\right )} + x^{2} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 0.82 \begin {gather*} -\frac {1}{2} \, x^{2} e^{\left (2 \, x - 6\right )} + x^{2} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 0.86
method | result | size |
norman | \(x^{2}+\frac {x}{2}-\frac {{\mathrm e}^{2 x -6} x^{2}}{2}\) | \(19\) |
risch | \(x^{2}+\frac {x}{2}-\frac {{\mathrm e}^{2 x -6} x^{2}}{2}\) | \(19\) |
default | \(x^{2}+\frac {x}{2}-\frac {3 \,{\mathrm e}^{2 x -6} \left (2 x -6\right )}{2}-\frac {9 \,{\mathrm e}^{2 x -6}}{2}-\frac {{\mathrm e}^{2 x -6} \left (2 x -6\right )^{2}}{8}\) | \(44\) |
derivativedivides | \(\frac {13 x}{2}-\frac {39}{2}+\frac {\left (2 x -6\right )^{2}}{4}-\frac {3 \,{\mathrm e}^{2 x -6} \left (2 x -6\right )}{2}-\frac {9 \,{\mathrm e}^{2 x -6}}{2}-\frac {{\mathrm e}^{2 x -6} \left (2 x -6\right )^{2}}{8}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 18, normalized size = 0.82 \begin {gather*} -\frac {1}{2} \, x^{2} e^{\left (2 \, x - 6\right )} + x^{2} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 18, normalized size = 0.82 \begin {gather*} \frac {x}{2}+x^2-\frac {x^2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-6}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.77 \begin {gather*} - \frac {x^{2} e^{2 x - 6}}{2} + x^{2} + \frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________