Optimal. Leaf size=26 \[ \frac {e^{\frac {-256+\log \left (x^3\right )}{5-x}} \log (2 (3+x))}{x} \]
________________________________________________________________________________________
Rubi [F] time = 21.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (25 x-10 x^2+x^3+\left (-30-757 x-252 x^2-x^3\right ) \log (6+2 x)+\left (3 x+x^2\right ) \log \left (x^3\right ) \log (6+2 x)\right )}{75 x^2-5 x^3-7 x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (25 x-10 x^2+x^3+\left (-30-757 x-252 x^2-x^3\right ) \log (6+2 x)+\left (3 x+x^2\right ) \log \left (x^3\right ) \log (6+2 x)\right )}{(5-x)^2 x^2 (3+x)} \, dx\\ &=\int \left (-\frac {10 e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{(-5+x)^2 (3+x)}+\frac {25 e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{(-5+x)^2 x (3+x)}+\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} x}{(-5+x)^2 (3+x)}+\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{(5-x)^2 x^2}\right ) \, dx\\ &=-\left (10 \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{(-5+x)^2 (3+x)} \, dx\right )+25 \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{(-5+x)^2 x (3+x)} \, dx+\int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} x}{(-5+x)^2 (3+x)} \, dx+\int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{(5-x)^2 x^2} \, dx\\ &=-\left (10 \int \left (\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{8 (-5+x)^2}-\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{64 (-5+x)}+\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{64 (3+x)}\right ) \, dx\right )+25 \int \left (\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{40 (-5+x)^2}-\frac {13 e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{1600 (-5+x)}+\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{75 x}-\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{192 (3+x)}\right ) \, dx+\int \left (\frac {5 e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{8 (-5+x)^2}+\frac {3 e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{64 (-5+x)}-\frac {3 e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{64 (3+x)}\right ) \, dx+\int \left (\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{25 (5-x)^2}+\frac {2 e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{125 (5-x)}+\frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{25 x^2}+\frac {2 e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{125 x}\right ) \, dx\\ &=\frac {2}{125} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{5-x} \, dx+\frac {2}{125} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{x} \, dx+\frac {1}{25} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{(5-x)^2} \, dx+\frac {1}{25} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}} \left (-10-249 x-x^2+x \log \left (x^3\right )\right ) \log (6+2 x)}{x^2} \, dx+\frac {3}{64} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{-5+x} \, dx-\frac {3}{64} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{3+x} \, dx-\frac {25}{192} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{3+x} \, dx+\frac {5}{32} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{-5+x} \, dx-\frac {5}{32} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{3+x} \, dx-\frac {13}{64} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{-5+x} \, dx+\frac {1}{3} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{x} \, dx+2 \left (\frac {5}{8} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{(-5+x)^2} \, dx\right )-\frac {5}{4} \int \frac {e^{\frac {256-\log \left (x^3\right )}{-5+x}}}{(-5+x)^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.95, size = 30, normalized size = 1.15 \begin {gather*} \frac {e^{\frac {256}{-5+x}} \left (x^3\right )^{-\frac {1}{-5+x}} \log (2 (3+x))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 24, normalized size = 0.92 \begin {gather*} \frac {e^{\left (-\frac {\log \left (x^{3}\right ) - 256}{x - 5}\right )} \log \left (2 \, x + 6\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{3} + {\left (x^{2} + 3 \, x\right )} \log \left (x^{3}\right ) \log \left (2 \, x + 6\right ) - 10 \, x^{2} - {\left (x^{3} + 252 \, x^{2} + 757 \, x + 30\right )} \log \left (2 \, x + 6\right ) + 25 \, x\right )} e^{\left (-\frac {\log \left (x^{3}\right ) - 256}{x - 5}\right )}}{x^{5} - 7 \, x^{4} - 5 \, x^{3} + 75 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.23, size = 148, normalized size = 5.69
method | result | size |
risch | \(\frac {\ln \left (2 x +6\right ) {\mathrm e}^{-\frac {-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+6 \ln \relax (x )-512}{2 \left (x -5\right )}}}{x}\) | \(148\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 29, normalized size = 1.12 \begin {gather*} \frac {{\left (\log \relax (2) + \log \left (x + 3\right )\right )} e^{\left (-\frac {3 \, \log \relax (x)}{x - 5} + \frac {256}{x - 5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {\ln \left (x^3\right )-256}{x-5}}\,\left (25\,x-\ln \left (2\,x+6\right )\,\left (x^3+252\,x^2+757\,x+30\right )-10\,x^2+x^3+\ln \left (x^3\right )\,\ln \left (2\,x+6\right )\,\left (x^2+3\,x\right )\right )}{x^5-7\,x^4-5\,x^3+75\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 19, normalized size = 0.73 \begin {gather*} \frac {e^{\frac {256 - \log {\left (x^{3} \right )}}{x - 5}} \log {\left (2 x + 6 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________