3.51.66 \(\int \frac {e^{2 e^{\frac {1}{3} (-3+\log (\frac {e^4 x+x^2-3 x \log (x)}{e^4+x}))}+\frac {1}{3} (-3+\log (\frac {e^4 x+x^2-3 x \log (x)}{e^4+x}))} (-2 e^8+e^4 (6-4 x)+6 x-2 x^2+6 e^4 \log (x))}{-3 e^8 x-6 e^4 x^2-3 x^3+(9 e^4 x+9 x^2) \log (x)} \, dx\)

Optimal. Leaf size=27 \[ e^{2 e^{\frac {1}{3} \left (-3+\log \left (x-\frac {3 x \log (x)}{e^4+x}\right )\right )}} \]

________________________________________________________________________________________

Rubi [F]  time = 46.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (2 \exp \left (\frac {1}{3} \left (-3+\log \left (\frac {e^4 x+x^2-3 x \log (x)}{e^4+x}\right )\right )\right )+\frac {1}{3} \left (-3+\log \left (\frac {e^4 x+x^2-3 x \log (x)}{e^4+x}\right )\right )\right ) \left (-2 e^8+e^4 (6-4 x)+6 x-2 x^2+6 e^4 \log (x)\right )}{-3 e^8 x-6 e^4 x^2-3 x^3+\left (9 e^4 x+9 x^2\right ) \log (x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^(2*E^((-3 + Log[(E^4*x + x^2 - 3*x*Log[x])/(E^4 + x)])/3) + (-3 + Log[(E^4*x + x^2 - 3*x*Log[x])/(E^4 +
 x)])/3)*(-2*E^8 + E^4*(6 - 4*x) + 6*x - 2*x^2 + 6*E^4*Log[x]))/(-3*E^8*x - 6*E^4*x^2 - 3*x^3 + (9*E^4*x + 9*x
^2)*Log[x]),x]

[Out]

(-6*x^(2/3)*(E^4 + x - 3*Log[x])^(2/3)*Defer[Subst][Defer[Int][E^(3 + (2*((x^3*(E^4 + x^3 - 3*Log[x^3]))/(E^4
+ x^3))^(1/3))/E)/((E^4 + x^3)^(4/3)*(E^4 + x^3 - 3*Log[x^3])^(2/3)), x], x, x^(1/3)])/((E^4 + x)^(2/3)*((x*(E
^4 + x - 3*Log[x]))/(E^4 + x))^(2/3)) + (2*x^(2/3)*(E^4 + x - 3*Log[x])^(2/3)*Defer[Subst][Defer[Int][E^(7 + (
2*((x^3*(E^4 + x^3 - 3*Log[x^3]))/(E^4 + x^3))^(1/3))/E)/((E^4 + x^3)^(4/3)*(E^4 + x^3 - 3*Log[x^3])^(2/3)), x
], x, x^(1/3)])/((E^4 + x)^(2/3)*((x*(E^4 + x - 3*Log[x]))/(E^4 + x))^(2/3)) - (6*x^(2/3)*(E^4 + x - 3*Log[x])
^(2/3)*Defer[Subst][Defer[Int][(E^(-1 + (2*((x^3*(E^4 + x^3 - 3*Log[x^3]))/(E^4 + x^3))^(1/3))/E)*x^3)/((E^4 +
 x^3)^(4/3)*(E^4 + x^3 - 3*Log[x^3])^(2/3)), x], x, x^(1/3)])/((E^4 + x)^(2/3)*((x*(E^4 + x - 3*Log[x]))/(E^4
+ x))^(2/3)) + (4*x^(2/3)*(E^4 + x - 3*Log[x])^(2/3)*Defer[Subst][Defer[Int][(E^(3 + (2*((x^3*(E^4 + x^3 - 3*L
og[x^3]))/(E^4 + x^3))^(1/3))/E)*x^3)/((E^4 + x^3)^(4/3)*(E^4 + x^3 - 3*Log[x^3])^(2/3)), x], x, x^(1/3)])/((E
^4 + x)^(2/3)*((x*(E^4 + x - 3*Log[x]))/(E^4 + x))^(2/3)) + (2*x^(2/3)*(E^4 + x - 3*Log[x])^(2/3)*Defer[Subst]
[Defer[Int][(E^(-1 + (2*((x^3*(E^4 + x^3 - 3*Log[x^3]))/(E^4 + x^3))^(1/3))/E)*x^6)/((E^4 + x^3)^(4/3)*(E^4 +
x^3 - 3*Log[x^3])^(2/3)), x], x, x^(1/3)])/((E^4 + x)^(2/3)*((x*(E^4 + x - 3*Log[x]))/(E^4 + x))^(2/3)) - (6*x
^(2/3)*(E^4 + x - 3*Log[x])^(2/3)*Defer[Subst][Defer[Int][(E^(3 + (2*((x^3*(E^4 + x^3 - 3*Log[x^3]))/(E^4 + x^
3))^(1/3))/E)*Log[x^3])/((E^4 + x^3)^(4/3)*(E^4 + x^3 - 3*Log[x^3])^(2/3)), x], x, x^(1/3)])/((E^4 + x)^(2/3)*
((x*(E^4 + x - 3*Log[x]))/(E^4 + x))^(2/3))

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-1+\frac {2 \sqrt [3]{\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}}}{e}} \left (e^8+(-3+x) x+e^4 (-3+2 x)-3 e^4 \log (x)\right )}{3 \left (e^4+x\right )^2 \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}} \, dx\\ &=\frac {2}{3} \int \frac {e^{-1+\frac {2 \sqrt [3]{\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}}}{e}} \left (e^8+(-3+x) x+e^4 (-3+2 x)-3 e^4 \log (x)\right )}{\left (e^4+x\right )^2 \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}} \, dx\\ &=\frac {\left (2 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \int \frac {e^{-1+\frac {2 \sqrt [3]{\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}}}{e}} \left (e^8+(-3+x) x+e^4 (-3+2 x)-3 e^4 \log (x)\right )}{x^{2/3} \left (e^4+x\right )^{4/3} \left (e^4+x-3 \log (x)\right )^{2/3}} \, dx}{3 \left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}\\ &=\frac {\left (2 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \operatorname {Subst}\left (\int \frac {\exp \left (-1+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) \left (e^8+x^3 \left (-3+x^3\right )+e^4 \left (-3+2 x^3\right )-3 e^4 \log \left (x^3\right )\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}} \, dx,x,\sqrt [3]{x}\right )}{\left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}\\ &=\frac {\left (2 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \operatorname {Subst}\left (\int \left (\frac {\exp \left (7+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}}+\frac {\exp \left (-1+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) x^3 \left (-3+x^3\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}}+\frac {\exp \left (3+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) \left (-3+2 x^3\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}}-\frac {3 \exp \left (3+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) \log \left (x^3\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}}\right ) \, dx,x,\sqrt [3]{x}\right )}{\left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}\\ &=\frac {\left (2 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \operatorname {Subst}\left (\int \frac {\exp \left (7+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}} \, dx,x,\sqrt [3]{x}\right )}{\left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}+\frac {\left (2 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \operatorname {Subst}\left (\int \frac {\exp \left (-1+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) x^3 \left (-3+x^3\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}} \, dx,x,\sqrt [3]{x}\right )}{\left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}+\frac {\left (2 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \operatorname {Subst}\left (\int \frac {\exp \left (3+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) \left (-3+2 x^3\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}} \, dx,x,\sqrt [3]{x}\right )}{\left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}-\frac {\left (6 x^{2/3} \left (e^4+x-3 \log (x)\right )^{2/3}\right ) \operatorname {Subst}\left (\int \frac {\exp \left (3+\frac {2 \sqrt [3]{\frac {x^3 \left (e^4+x^3-3 \log \left (x^3\right )\right )}{e^4+x^3}}}{e}\right ) \log \left (x^3\right )}{\left (e^4+x^3\right )^{4/3} \left (e^4+x^3-3 \log \left (x^3\right )\right )^{2/3}} \, dx,x,\sqrt [3]{x}\right )}{\left (e^4+x\right )^{2/3} \left (\frac {x \left (e^4+x-3 \log (x)\right )}{e^4+x}\right )^{2/3}}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [F]  time = 0.80, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{2 e^{\frac {1}{3} \left (-3+\log \left (\frac {e^4 x+x^2-3 x \log (x)}{e^4+x}\right )\right )}+\frac {1}{3} \left (-3+\log \left (\frac {e^4 x+x^2-3 x \log (x)}{e^4+x}\right )\right )} \left (-2 e^8+e^4 (6-4 x)+6 x-2 x^2+6 e^4 \log (x)\right )}{-3 e^8 x-6 e^4 x^2-3 x^3+\left (9 e^4 x+9 x^2\right ) \log (x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(E^(2*E^((-3 + Log[(E^4*x + x^2 - 3*x*Log[x])/(E^4 + x)])/3) + (-3 + Log[(E^4*x + x^2 - 3*x*Log[x])/
(E^4 + x)])/3)*(-2*E^8 + E^4*(6 - 4*x) + 6*x - 2*x^2 + 6*E^4*Log[x]))/(-3*E^8*x - 6*E^4*x^2 - 3*x^3 + (9*E^4*x
 + 9*x^2)*Log[x]),x]

[Out]

Integrate[(E^(2*E^((-3 + Log[(E^4*x + x^2 - 3*x*Log[x])/(E^4 + x)])/3) + (-3 + Log[(E^4*x + x^2 - 3*x*Log[x])/
(E^4 + x)])/3)*(-2*E^8 + E^4*(6 - 4*x) + 6*x - 2*x^2 + 6*E^4*Log[x]))/(-3*E^8*x - 6*E^4*x^2 - 3*x^3 + (9*E^4*x
 + 9*x^2)*Log[x]), x]

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(4)*log(x)-2*exp(4)^2+(6-4*x)*exp(4)-2*x^2+6*x)*exp(1/3*log((-3*x*log(x)+x*exp(4)+x^2)/(x+exp(
4)))-1)*exp(2*exp(1/3*log((-3*x*log(x)+x*exp(4)+x^2)/(x+exp(4)))-1))/((9*x*exp(4)+9*x^2)*log(x)-3*x*exp(4)^2-6
*x^2*exp(4)-3*x^3),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   do_alg_rde: unimplemented kernel

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(4)*log(x)-2*exp(4)^2+(6-4*x)*exp(4)-2*x^2+6*x)*exp(1/3*log((-3*x*log(x)+x*exp(4)+x^2)/(x+exp(
4)))-1)*exp(2*exp(1/3*log((-3*x*log(x)+x*exp(4)+x^2)/(x+exp(4)))-1))/((9*x*exp(4)+9*x^2)*log(x)-3*x*exp(4)^2-6
*x^2*exp(4)-3*x^3),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Simplification assuming t_nostep near 0Simplification assuming t_nostep near 0sym2poly/r2sym(const gen & e,
const index

________________________________________________________________________________________

maple [C]  time = 0.14, size = 308, normalized size = 11.41




method result size



risch \({\mathrm e}^{\frac {2 x^{\frac {1}{3}} \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )^{\frac {1}{3}} {\mathrm e}^{-1-\frac {i \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right )^{3}}{6}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x +{\mathrm e}^{4}}\right )}{6}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )\right )}{6}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right ) \mathrm {csgn}\left (\frac {i}{x +{\mathrm e}^{4}}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )\right )}{6}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right ) \mathrm {csgn}\left (\frac {i x \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right )^{2}}{6}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right ) \mathrm {csgn}\left (\frac {i x \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right ) \mathrm {csgn}\left (i x \right )}{6}-\frac {i \pi \mathrm {csgn}\left (\frac {i x \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right )^{3}}{6}+\frac {i \pi \mathrm {csgn}\left (\frac {i x \left ({\mathrm e}^{4}+x -3 \ln \relax (x )\right )}{x +{\mathrm e}^{4}}\right )^{2} \mathrm {csgn}\left (i x \right )}{6}}}{\left (x +{\mathrm e}^{4}\right )^{\frac {1}{3}}}}\) \(308\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((6*exp(4)*ln(x)-2*exp(4)^2+(6-4*x)*exp(4)-2*x^2+6*x)*exp(1/3*ln((-3*x*ln(x)+x*exp(4)+x^2)/(x+exp(4)))-1)*e
xp(2*exp(1/3*ln((-3*x*ln(x)+x*exp(4)+x^2)/(x+exp(4)))-1))/((9*x*exp(4)+9*x^2)*ln(x)-3*x*exp(4)^2-6*x^2*exp(4)-
3*x^3),x,method=_RETURNVERBOSE)

[Out]

exp(2*x^(1/3)/(x+exp(4))^(1/3)*(exp(4)+x-3*ln(x))^(1/3)*exp(-1-1/6*I*Pi*csgn(I/(x+exp(4))*(exp(4)+x-3*ln(x)))^
3+1/6*I*Pi*csgn(I/(x+exp(4))*(exp(4)+x-3*ln(x)))^2*csgn(I/(x+exp(4)))+1/6*I*Pi*csgn(I/(x+exp(4))*(exp(4)+x-3*l
n(x)))^2*csgn(I*(exp(4)+x-3*ln(x)))-1/6*I*Pi*csgn(I/(x+exp(4))*(exp(4)+x-3*ln(x)))*csgn(I/(x+exp(4)))*csgn(I*(
exp(4)+x-3*ln(x)))+1/6*I*Pi*csgn(I/(x+exp(4))*(exp(4)+x-3*ln(x)))*csgn(I*x/(x+exp(4))*(exp(4)+x-3*ln(x)))^2-1/
6*I*Pi*csgn(I/(x+exp(4))*(exp(4)+x-3*ln(x)))*csgn(I*x/(x+exp(4))*(exp(4)+x-3*ln(x)))*csgn(I*x)-1/6*I*Pi*csgn(I
*x/(x+exp(4))*(exp(4)+x-3*ln(x)))^3+1/6*I*Pi*csgn(I*x/(x+exp(4))*(exp(4)+x-3*ln(x)))^2*csgn(I*x)))

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 24, normalized size = 0.89 \begin {gather*} e^{\left (\frac {2 \, {\left (x + e^{4} - 3 \, \log \relax (x)\right )}^{\frac {1}{3}} x^{\frac {1}{3}} e^{\left (-1\right )}}{{\left (x + e^{4}\right )}^{\frac {1}{3}}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(4)*log(x)-2*exp(4)^2+(6-4*x)*exp(4)-2*x^2+6*x)*exp(1/3*log((-3*x*log(x)+x*exp(4)+x^2)/(x+exp(
4)))-1)*exp(2*exp(1/3*log((-3*x*log(x)+x*exp(4)+x^2)/(x+exp(4)))-1))/((9*x*exp(4)+9*x^2)*log(x)-3*x*exp(4)^2-6
*x^2*exp(4)-3*x^3),x, algorithm="maxima")

[Out]

e^(2*(x + e^4 - 3*log(x))^(1/3)*x^(1/3)*e^(-1)/(x + e^4)^(1/3))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^{\frac {\ln \left (\frac {x\,{\mathrm {e}}^4-3\,x\,\ln \relax (x)+x^2}{x+{\mathrm {e}}^4}\right )}{3}-1}}\,{\mathrm {e}}^{\frac {\ln \left (\frac {x\,{\mathrm {e}}^4-3\,x\,\ln \relax (x)+x^2}{x+{\mathrm {e}}^4}\right )}{3}-1}\,\left (2\,{\mathrm {e}}^8-6\,x-6\,{\mathrm {e}}^4\,\ln \relax (x)+2\,x^2+{\mathrm {e}}^4\,\left (4\,x-6\right )\right )}{3\,x\,{\mathrm {e}}^8-\ln \relax (x)\,\left (9\,x^2+9\,{\mathrm {e}}^4\,x\right )+6\,x^2\,{\mathrm {e}}^4+3\,x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*exp(log((x*exp(4) - 3*x*log(x) + x^2)/(x + exp(4)))/3 - 1))*exp(log((x*exp(4) - 3*x*log(x) + x^2)/(
x + exp(4)))/3 - 1)*(2*exp(8) - 6*x - 6*exp(4)*log(x) + 2*x^2 + exp(4)*(4*x - 6)))/(3*x*exp(8) - log(x)*(9*x*e
xp(4) + 9*x^2) + 6*x^2*exp(4) + 3*x^3),x)

[Out]

int((exp(2*exp(log((x*exp(4) - 3*x*log(x) + x^2)/(x + exp(4)))/3 - 1))*exp(log((x*exp(4) - 3*x*log(x) + x^2)/(
x + exp(4)))/3 - 1)*(2*exp(8) - 6*x - 6*exp(4)*log(x) + 2*x^2 + exp(4)*(4*x - 6)))/(3*x*exp(8) - log(x)*(9*x*e
xp(4) + 9*x^2) + 6*x^2*exp(4) + 3*x^3), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(4)*ln(x)-2*exp(4)**2+(6-4*x)*exp(4)-2*x**2+6*x)*exp(1/3*ln((-3*x*ln(x)+x*exp(4)+x**2)/(x+exp(
4)))-1)*exp(2*exp(1/3*ln((-3*x*ln(x)+x*exp(4)+x**2)/(x+exp(4)))-1))/((9*x*exp(4)+9*x**2)*ln(x)-3*x*exp(4)**2-6
*x**2*exp(4)-3*x**3),x)

[Out]

Timed out

________________________________________________________________________________________