Optimal. Leaf size=31 \[ \frac {2-\frac {x}{2+\log \left (\frac {x}{5}\right )}}{\left (1+e^2\right ) (-1+x) x} \]
________________________________________________________________________________________
Rubi [F] time = 0.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8-17 x+3 x^2+\left (8-16 x+x^2\right ) \log \left (\frac {x}{5}\right )+(2-4 x) \log ^2\left (\frac {x}{5}\right )}{4 x^2-8 x^3+4 x^4+e^2 \left (4 x^2-8 x^3+4 x^4\right )+\left (4 x^2-8 x^3+4 x^4+e^2 \left (4 x^2-8 x^3+4 x^4\right )\right ) \log \left (\frac {x}{5}\right )+\left (x^2-2 x^3+x^4+e^2 \left (x^2-2 x^3+x^4\right )\right ) \log ^2\left (\frac {x}{5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8-17 x+3 x^2+\left (8-16 x+x^2\right ) \log \left (\frac {x}{5}\right )+(2-4 x) \log ^2\left (\frac {x}{5}\right )}{\left (1+e^2\right ) (1-x)^2 x^2 \left (2+\log \left (\frac {x}{5}\right )\right )^2} \, dx\\ &=\frac {\int \frac {8-17 x+3 x^2+\left (8-16 x+x^2\right ) \log \left (\frac {x}{5}\right )+(2-4 x) \log ^2\left (\frac {x}{5}\right )}{(1-x)^2 x^2 \left (2+\log \left (\frac {x}{5}\right )\right )^2} \, dx}{1+e^2}\\ &=\frac {\int \left (-\frac {2 (-1+2 x)}{(-1+x)^2 x^2}+\frac {1}{(-1+x) x \left (2+\log \left (\frac {x}{5}\right )\right )^2}+\frac {1}{(-1+x)^2 \left (2+\log \left (\frac {x}{5}\right )\right )}\right ) \, dx}{1+e^2}\\ &=\frac {\int \frac {1}{(-1+x) x \left (2+\log \left (\frac {x}{5}\right )\right )^2} \, dx}{1+e^2}+\frac {\int \frac {1}{(-1+x)^2 \left (2+\log \left (\frac {x}{5}\right )\right )} \, dx}{1+e^2}-\frac {2 \int \frac {-1+2 x}{(-1+x)^2 x^2} \, dx}{1+e^2}\\ &=-\frac {2}{\left (1+e^2\right ) (1-x) x}+\frac {\int \frac {1}{(-1+x) x \left (2+\log \left (\frac {x}{5}\right )\right )^2} \, dx}{1+e^2}+\frac {\int \frac {1}{(-1+x)^2 \left (2+\log \left (\frac {x}{5}\right )\right )} \, dx}{1+e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 39, normalized size = 1.26 \begin {gather*} \frac {\frac {2}{-1+x}-\frac {2}{x}+\frac {1}{(1-x) \left (2+\log \left (\frac {x}{5}\right )\right )}}{1+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.99, size = 55, normalized size = 1.77 \begin {gather*} -\frac {x - 2 \, \log \left (\frac {1}{5} \, x\right ) - 4}{2 \, x^{2} + 2 \, {\left (x^{2} - x\right )} e^{2} + {\left (x^{2} + {\left (x^{2} - x\right )} e^{2} - x\right )} \log \left (\frac {1}{5} \, x\right ) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 68, normalized size = 2.19 \begin {gather*} -\frac {x - 2 \, \log \left (\frac {1}{5} \, x\right ) - 4}{x^{2} e^{2} \log \left (\frac {1}{5} \, x\right ) + 2 \, x^{2} e^{2} + x^{2} \log \left (\frac {1}{5} \, x\right ) - x e^{2} \log \left (\frac {1}{5} \, x\right ) + 2 \, x^{2} - 2 \, x e^{2} - x \log \left (\frac {1}{5} \, x\right ) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 43, normalized size = 1.39
method | result | size |
risch | \(\frac {2}{x \left ({\mathrm e}^{2} x -{\mathrm e}^{2}+x -1\right )}-\frac {1}{\left ({\mathrm e}^{2} x -{\mathrm e}^{2}+x -1\right ) \left (\ln \left (\frac {x}{5}\right )+2\right )}\) | \(43\) |
norman | \(\frac {-\frac {x}{{\mathrm e}^{2}+1}+\frac {4}{{\mathrm e}^{2}+1}+\frac {2 \ln \left (\frac {x}{5}\right )}{{\mathrm e}^{2}+1}}{x \left (\ln \left (\frac {x}{5}\right )+2\right ) \left (x -1\right )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 64, normalized size = 2.06 \begin {gather*} \frac {x + 2 \, \log \relax (5) - 2 \, \log \relax (x) - 4}{{\left ({\left (\log \relax (5) - 2\right )} e^{2} + \log \relax (5) - 2\right )} x^{2} - {\left ({\left (\log \relax (5) - 2\right )} e^{2} + \log \relax (5) - 2\right )} x - {\left (x^{2} {\left (e^{2} + 1\right )} - x {\left (e^{2} + 1\right )}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.85, size = 38, normalized size = 1.23 \begin {gather*} \frac {2}{x\,\left ({\mathrm {e}}^2+1\right )\,\left (x-1\right )}-\frac {1}{\left (\ln \left (\frac {x}{5}\right )+2\right )\,\left ({\mathrm {e}}^2+1\right )\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 53, normalized size = 1.71 \begin {gather*} - \frac {1}{2 x + 2 x e^{2} + \left (x + x e^{2} - e^{2} - 1\right ) \log {\left (\frac {x}{5} \right )} - 2 e^{2} - 2} + \frac {2}{x^{2} \left (1 + e^{2}\right ) + x \left (- e^{2} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________