Optimal. Leaf size=32 \[ \frac {x^2}{5-x^3-\log \left (\frac {4 e^{3+\frac {2}{4+x}}}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {144 x+70 x^2+9 x^3+16 x^4+8 x^5+x^6+\left (-32 x-16 x^2-2 x^3\right ) \log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )}{400+200 x+25 x^2-160 x^3-80 x^4-10 x^5+16 x^6+8 x^7+x^8+\left (-160-80 x-10 x^2+32 x^3+16 x^4+2 x^5\right ) \log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )+\left (16+8 x+x^2\right ) \log ^2\left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (144+70 x+9 x^2+16 x^3+8 x^4+x^5-2 (4+x)^2 \log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )}{(4+x)^2 \left (5-x^3-\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx\\ &=\int \left (\frac {x \left (-16-10 x-x^2+48 x^3+24 x^4+3 x^5\right )}{(4+x)^2 \left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2}-\frac {2 x}{-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x}{-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )} \, dx\right )+\int \frac {x \left (-16-10 x-x^2+48 x^3+24 x^4+3 x^5\right )}{(4+x)^2 \left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x}{-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )} \, dx\right )+\int \left (-\frac {2}{\left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2}-\frac {x}{\left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2}+\frac {3 x^4}{\left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2}-\frac {32}{(4+x)^2 \left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2}+\frac {16}{(4+x) \left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {1}{\left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx\right )-2 \int \frac {x}{-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )} \, dx+3 \int \frac {x^4}{\left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx+16 \int \frac {1}{(4+x) \left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx-32 \int \frac {1}{(4+x)^2 \left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx-\int \frac {x}{\left (-5+x^3+\log \left (\frac {4 e^{\frac {14+3 x}{4+x}}}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 29, normalized size = 0.91 \begin {gather*} -\frac {x^2}{-5+x^3+\log \left (\frac {4 e^{3+\frac {2}{4+x}}}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 30, normalized size = 0.94 \begin {gather*} -\frac {x^{2}}{x^{3} + \log \left (\frac {4 \, e^{\left (\frac {3 \, x + 14}{x + 4}\right )}}{x}\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 44, normalized size = 1.38 \begin {gather*} -\frac {x^{3} + 4 \, x^{2}}{x^{4} + 4 \, x^{3} + 2 \, x \log \relax (2) - x \log \relax (x) - 2 \, x + 8 \, \log \relax (2) - 4 \, \log \relax (x) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 182, normalized size = 5.69
method | result | size |
risch | \(-\frac {2 x^{2}}{-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {3 x +14}{4+x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {3 x +14}{4+x}}}{x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {3 x +14}{4+x}}}{x}\right )^{2}-10+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {3 x +14}{4+x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {3 x +14}{4+x}}}{x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {3 x +14}{4+x}}}{x}\right )^{3}+2 x^{3}+4 \ln \relax (2)-2 \ln \relax (x )+2 \ln \left ({\mathrm e}^{\frac {3 x +14}{4+x}}\right )}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 41, normalized size = 1.28 \begin {gather*} -\frac {x^{3} + 4 \, x^{2}}{x^{4} + 4 \, x^{3} + 2 \, x {\left (\log \relax (2) - 1\right )} - {\left (x + 4\right )} \log \relax (x) + 8 \, \log \relax (2) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.74, size = 33, normalized size = 1.03 \begin {gather*} -\frac {x^2}{\ln \left (\frac {4}{x}\right )+\frac {3\,x}{x+4}+\frac {14}{x+4}+x^3-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 24, normalized size = 0.75 \begin {gather*} - \frac {x^{2}}{x^{3} + \log {\left (\frac {4 e^{\frac {3 x + 14}{x + 4}}}{x} \right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________