Optimal. Leaf size=29 \[ 3 (3+2 x)+2 \left (x+x \left (x+\log \left (x^2+\log ^2\left (5 e^3\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 23, normalized size of antiderivative = 0.79, number of steps used = 8, number of rules used = 5, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6725, 1810, 203, 2448, 321} \begin {gather*} 2 x^2+2 x \log \left (x^2+(3+\log (5))^2\right )+8 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 203
Rule 321
Rule 1810
Rule 2448
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 \left (3 x^2+x^3+2 (3+\log (5))^2+x (3+\log (5))^2\right )}{9+x^2+6 \log (5)+\log ^2(5)}+2 \log \left (x^2+(3+\log (5))^2\right )\right ) \, dx\\ &=2 \int \log \left (x^2+(3+\log (5))^2\right ) \, dx+4 \int \frac {3 x^2+x^3+2 (3+\log (5))^2+x (3+\log (5))^2}{9+x^2+6 \log (5)+\log ^2(5)} \, dx\\ &=2 x \log \left (x^2+(3+\log (5))^2\right )-4 \int \frac {x^2}{x^2+(3+\log (5))^2} \, dx+4 \int \left (3+x+\frac {-9-6 \log (5)-\log ^2(5)}{x^2+(3+\log (5))^2}\right ) \, dx\\ &=8 x+2 x^2+2 x \log \left (x^2+(3+\log (5))^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 48, normalized size = 1.66 \begin {gather*} 4 \tan ^{-1}\left (\frac {x}{3+\log (5)}\right ) (3+\log (5))+4 \tan ^{-1}\left (\frac {3+\log (5)}{x}\right ) (3+\log (5))+2 x \left (4+x+\log \left (x^2+(3+\log (5))^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 26, normalized size = 0.90 \begin {gather*} 2 \, x^{2} + 2 \, x \log \left (x^{2} + \log \relax (5)^{2} + 6 \, \log \relax (5) + 9\right ) + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 26, normalized size = 0.90 \begin {gather*} 2 \, x^{2} + 2 \, x \log \left (x^{2} + \log \relax (5)^{2} + 6 \, \log \relax (5) + 9\right ) + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 24, normalized size = 0.83
method | result | size |
risch | \(2 x^{2}+2 x \ln \left (\left (\ln \relax (5)+3\right )^{2}+x^{2}\right )+8 x\) | \(24\) |
norman | \(8 x +2 x^{2}+2 x \ln \left (\ln \left (5 \,{\mathrm e}^{3}\right )^{2}+x^{2}\right )\) | \(25\) |
default | \(8 x +2 x^{2}-\frac {4 \arctan \left (\frac {x}{\sqrt {\ln \relax (5)^{2}+6 \ln \relax (5)+9}}\right ) \ln \relax (5)^{2}}{\sqrt {\ln \relax (5)^{2}+6 \ln \relax (5)+9}}-\frac {24 \arctan \left (\frac {x}{\sqrt {\ln \relax (5)^{2}+6 \ln \relax (5)+9}}\right ) \ln \relax (5)}{\sqrt {\ln \relax (5)^{2}+6 \ln \relax (5)+9}}-\frac {36 \arctan \left (\frac {x}{\sqrt {\ln \relax (5)^{2}+6 \ln \relax (5)+9}}\right )}{\sqrt {\ln \relax (5)^{2}+6 \ln \relax (5)+9}}+2 x \ln \left (\ln \left (5 \,{\mathrm e}^{3}\right )^{2}+x^{2}\right )+4 \ln \left (5 \,{\mathrm e}^{3}\right ) \arctan \left (\frac {x}{\ln \left (5 \,{\mathrm e}^{3}\right )}\right )\) | \(135\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 70, normalized size = 2.41 \begin {gather*} 2 \, x^{2} + 2 \, x \log \left (x^{2} + \log \relax (5)^{2} + 6 \, \log \relax (5) + 9\right ) - 4 \, \arctan \left (\frac {x}{\log \left (5 \, e^{3}\right )}\right ) \log \left (5 \, e^{3}\right ) + 8 \, x + \frac {4 \, {\left (\log \relax (5)^{2} + 6 \, \log \relax (5) + 9\right )} \arctan \left (\frac {x}{\log \relax (5) + 3}\right )}{\log \relax (5) + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.40, size = 18, normalized size = 0.62 \begin {gather*} 2\,x\,\left (x+\ln \left (x^2+{\ln \left (5\,{\mathrm {e}}^3\right )}^2\right )+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 24, normalized size = 0.83 \begin {gather*} 2 x^{2} + 2 x \log {\left (x^{2} + \log {\left (5 e^{3} \right )}^{2} \right )} + 8 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________