Optimal. Leaf size=35 \[ \frac {2+x+\frac {x}{3+x+e^3 (5+x)}}{1+e^3+\frac {x}{5}}-\log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.34, antiderivative size = 88, normalized size of antiderivative = 2.51, number of steps used = 2, number of rules used = 1, integrand size = 221, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.005, Rules used = {2074} \begin {gather*} -\frac {5 \left (1+20 e^3+40 e^6+25 e^9\right )}{\left (2+5 e^3+5 e^6\right ) \left (x+5 \left (1+e^3\right )\right )}-\frac {5 \left (3+5 e^3\right )}{\left (2+5 e^3+5 e^6\right ) \left (\left (1+e^3\right ) x+5 e^3+3\right )}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{x}+\frac {5 \left (1+20 e^3+40 e^6+25 e^9\right )}{\left (2+5 e^3+5 e^6\right ) \left (5+5 e^3+x\right )^2}+\frac {5 \left (3+8 e^3+5 e^6\right )}{\left (2+5 e^3+5 e^6\right ) \left (3+5 e^3+\left (1+e^3\right ) x\right )^2}\right ) \, dx\\ &=-\frac {5 \left (1+20 e^3+40 e^6+25 e^9\right )}{\left (2+5 e^3+5 e^6\right ) \left (5 \left (1+e^3\right )+x\right )}-\frac {5 \left (3+5 e^3\right )}{\left (2+5 e^3+5 e^6\right ) \left (3+5 e^3+\left (1+e^3\right ) x\right )}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 59, normalized size = 1.69 \begin {gather*} -\frac {5 \left (9+2 x+5 e^6 (5+x)+e^3 (30+8 x)\right )}{15+8 x+x^2+5 e^6 (5+x)+e^3 \left (40+15 x+x^2\right )}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 80, normalized size = 2.29 \begin {gather*} -\frac {25 \, {\left (x + 5\right )} e^{6} + 10 \, {\left (4 \, x + 15\right )} e^{3} + {\left (x^{2} + 5 \, {\left (x + 5\right )} e^{6} + {\left (x^{2} + 15 \, x + 40\right )} e^{3} + 8 \, x + 15\right )} \log \relax (x) + 10 \, x + 45}{x^{2} + 5 \, {\left (x + 5\right )} e^{6} + {\left (x^{2} + 15 \, x + 40\right )} e^{3} + 8 \, x + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.43, size = 65, normalized size = 1.86
method | result | size |
risch | \(\frac {\left (-5 \,{\mathrm e}^{6}-8 \,{\mathrm e}^{3}-2\right ) x -25 \,{\mathrm e}^{6}-30 \,{\mathrm e}^{3}-9}{x \,{\mathrm e}^{6}+\frac {x^{2} {\mathrm e}^{3}}{5}+5 \,{\mathrm e}^{6}+3 x \,{\mathrm e}^{3}+\frac {x^{2}}{5}+8 \,{\mathrm e}^{3}+\frac {8 x}{5}+3}-\ln \relax (x )\) | \(65\) |
norman | \(\frac {-\frac {\left (50 \,{\mathrm e}^{3}+25 \,{\mathrm e}^{9}+65 \,{\mathrm e}^{6}+10\right ) x}{{\mathrm e}^{3}+1}-125 \,{\mathrm e}^{6}-45-150 \,{\mathrm e}^{3}}{5 x \,{\mathrm e}^{6}+x^{2} {\mathrm e}^{3}+25 \,{\mathrm e}^{6}+15 x \,{\mathrm e}^{3}+x^{2}+40 \,{\mathrm e}^{3}+8 x +15}-\ln \relax (x )\) | \(84\) |
default | \(\frac {5 \left (\munderset {\textit {\_R} =\RootOf \left (\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) \textit {\_Z}^{4}+\left (46 \,{\mathrm e}^{3}+10 \,{\mathrm e}^{9}+40 \,{\mathrm e}^{6}+16\right ) \textit {\_Z}^{3}+\left (350 \,{\mathrm e}^{3}+25 \,{\mathrm e}^{12}+200 \,{\mathrm e}^{9}+435 \,{\mathrm e}^{6}+94\right ) \textit {\_Z}^{2}+\left (1090 \,{\mathrm e}^{3}+250 \,{\mathrm e}^{12}+1150 \,{\mathrm e}^{9}+1750 \,{\mathrm e}^{6}+240\right ) \textit {\_Z} +625 \,{\mathrm e}^{12}+2000 \,{\mathrm e}^{9}+2350 \,{\mathrm e}^{6}+1200 \,{\mathrm e}^{3}+225\right )}{\sum }\frac {\left (42+\left (2+10 \,{\mathrm e}^{3}+5 \,{\mathrm e}^{9}+13 \,{\mathrm e}^{6}\right ) \textit {\_R}^{2}+2 \left (9+39 \,{\mathrm e}^{3}+25 \,{\mathrm e}^{9}+55 \,{\mathrm e}^{6}\right ) \textit {\_R} +175 \,{\mathrm e}^{3}+125 \,{\mathrm e}^{9}+250 \,{\mathrm e}^{6}\right ) \ln \left (x -\textit {\_R} \right )}{120+25 \textit {\_R} \,{\mathrm e}^{12}+15 \textit {\_R}^{2} {\mathrm e}^{9}+2 \textit {\_R}^{3} {\mathrm e}^{6}+125 \,{\mathrm e}^{12}+200 \textit {\_R} \,{\mathrm e}^{9}+60 \textit {\_R}^{2} {\mathrm e}^{6}+4 \textit {\_R}^{3} {\mathrm e}^{3}+575 \,{\mathrm e}^{9}+435 \textit {\_R} \,{\mathrm e}^{6}+69 \textit {\_R}^{2} {\mathrm e}^{3}+2 \textit {\_R}^{3}+875 \,{\mathrm e}^{6}+350 \textit {\_R} \,{\mathrm e}^{3}+24 \textit {\_R}^{2}+545 \,{\mathrm e}^{3}+94 \textit {\_R}}\right )}{2}-\ln \relax (x )\) | \(246\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 61, normalized size = 1.74 \begin {gather*} -\frac {5 \, {\left (x {\left (5 \, e^{6} + 8 \, e^{3} + 2\right )} + 25 \, e^{6} + 30 \, e^{3} + 9\right )}}{x^{2} {\left (e^{3} + 1\right )} + x {\left (5 \, e^{6} + 15 \, e^{3} + 8\right )} + 25 \, e^{6} + 40 \, e^{3} + 15} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 61, normalized size = 1.74 \begin {gather*} -\ln \relax (x)-\frac {150\,{\mathrm {e}}^3+125\,{\mathrm {e}}^6+x\,\left (40\,{\mathrm {e}}^3+25\,{\mathrm {e}}^6+10\right )+45}{\left ({\mathrm {e}}^3+1\right )\,x^2+\left (15\,{\mathrm {e}}^3+5\,{\mathrm {e}}^6+8\right )\,x+40\,{\mathrm {e}}^3+25\,{\mathrm {e}}^6+15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.36, size = 63, normalized size = 1.80 \begin {gather*} - \frac {x \left (10 + 40 e^{3} + 25 e^{6}\right ) + 45 + 150 e^{3} + 125 e^{6}}{x^{2} \left (1 + e^{3}\right ) + x \left (8 + 15 e^{3} + 5 e^{6}\right ) + 15 + 40 e^{3} + 25 e^{6}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________