Optimal. Leaf size=17 \[ \frac {3}{10} x^3 \log \left (\frac {1}{4} x (x+\log (2))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.137, Rules used = {6688, 12, 6742, 77, 2495, 30, 43} \begin {gather*} \frac {3}{10} x^3 \log \left (\frac {1}{4} x (x+\log (2))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 43
Rule 77
Rule 2495
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x^2 \left (2 x+\log (2)+3 (x+\log (2)) \log \left (\frac {1}{4} x (x+\log (2))\right )\right )}{10 (x+\log (2))} \, dx\\ &=\frac {3}{10} \int \frac {x^2 \left (2 x+\log (2)+3 (x+\log (2)) \log \left (\frac {1}{4} x (x+\log (2))\right )\right )}{x+\log (2)} \, dx\\ &=\frac {3}{10} \int \left (\frac {x^2 (2 x+\log (2))}{x+\log (2)}+3 x^2 \log \left (\frac {1}{4} x (x+\log (2))\right )\right ) \, dx\\ &=\frac {3}{10} \int \frac {x^2 (2 x+\log (2))}{x+\log (2)} \, dx+\frac {9}{10} \int x^2 \log \left (\frac {1}{4} x (x+\log (2))\right ) \, dx\\ &=\frac {3}{10} x^3 \log \left (\frac {1}{4} x (x+\log (2))\right )-\frac {3 \int x^2 \, dx}{10}-\frac {3}{10} \int \frac {x^3}{x+\log (2)} \, dx+\frac {3}{10} \int \left (2 x^2-x \log (2)+\log ^2(2)-\frac {\log ^3(2)}{x+\log (2)}\right ) \, dx\\ &=\frac {x^3}{10}-\frac {3}{20} x^2 \log (2)+\frac {3}{10} x \log ^2(2)-\frac {3}{10} \log ^3(2) \log (x+\log (2))+\frac {3}{10} x^3 \log \left (\frac {1}{4} x (x+\log (2))\right )-\frac {3}{10} \int \left (x^2-x \log (2)+\log ^2(2)-\frac {\log ^3(2)}{x+\log (2)}\right ) \, dx\\ &=\frac {3}{10} x^3 \log \left (\frac {1}{4} x (x+\log (2))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 17, normalized size = 1.00 \begin {gather*} \frac {3}{10} x^3 \log \left (\frac {1}{4} x (x+\log (2))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 17, normalized size = 1.00 \begin {gather*} \frac {3}{10} \, x^{3} \log \left (\frac {1}{4} \, x^{2} + \frac {1}{4} \, x \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 22, normalized size = 1.29 \begin {gather*} -\frac {3}{5} \, x^{3} \log \relax (2) + \frac {3}{10} \, x^{3} \log \left (x^{2} + x \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 18, normalized size = 1.06
method | result | size |
norman | \(\frac {3 x^{3} \ln \left (\frac {x \ln \relax (2)}{4}+\frac {x^{2}}{4}\right )}{10}\) | \(18\) |
risch | \(\frac {3 x^{3} \ln \left (\frac {x \ln \relax (2)}{4}+\frac {x^{2}}{4}\right )}{10}\) | \(18\) |
default | \(\frac {3 x^{3} \ln \left (x \ln \relax (2)+x^{2}\right )}{10}-\frac {3 x^{3} \ln \relax (2)}{5}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 88, normalized size = 5.18 \begin {gather*} -\frac {1}{5} \, x^{3} {\left (3 \, \log \relax (2) + 1\right )} - \frac {3}{5} \, \log \relax (2)^{3} \log \left (x + \log \relax (2)\right ) + \frac {3}{10} \, x^{3} \log \relax (x) + \frac {1}{5} \, x^{3} - \frac {3}{20} \, x^{2} \log \relax (2) + \frac {3}{10} \, x \log \relax (2)^{2} + \frac {3}{20} \, {\left (2 \, \log \relax (2)^{2} \log \left (x + \log \relax (2)\right ) + x^{2} - 2 \, x \log \relax (2)\right )} \log \relax (2) + \frac {3}{10} \, {\left (x^{3} + \log \relax (2)^{3}\right )} \log \left (x + \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 19, normalized size = 1.12 \begin {gather*} -\frac {3\,x^3\,\left (\ln \relax (4)-\ln \left (x^2+\ln \relax (2)\,x\right )\right )}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 1.12 \begin {gather*} \frac {3 x^{3} \log {\left (\frac {x^{2}}{4} + \frac {x \log {\relax (2 )}}{4} \right )}}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________