Optimal. Leaf size=25 \[ 25 \left (1+e^3-e^x+x-\log ^2\left (4+\frac {x}{12}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6688, 2194, 2390, 12, 2301} \begin {gather*} -25 e^x+25 x-25 \log ^2\left (\frac {x}{12}+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2301
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (25-25 e^x-\frac {50 \log \left (4+\frac {x}{12}\right )}{48+x}\right ) \, dx\\ &=25 x-25 \int e^x \, dx-50 \int \frac {\log \left (4+\frac {x}{12}\right )}{48+x} \, dx\\ &=-25 e^x+25 x-600 \operatorname {Subst}\left (\int \frac {\log (x)}{12 x} \, dx,x,4+\frac {x}{12}\right )\\ &=-25 e^x+25 x-50 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,4+\frac {x}{12}\right )\\ &=-25 e^x+25 x-25 \log ^2\left (4+\frac {x}{12}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.84 \begin {gather*} -25 e^x+25 x-25 \log ^2\left (4+\frac {x}{12}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 18, normalized size = 0.72 \begin {gather*} -25 \, \log \left (\frac {1}{12} \, x + 4\right )^{2} + 25 \, x - 25 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 18, normalized size = 0.72 \begin {gather*} -25 \, \log \left (\frac {1}{12} \, x + 4\right )^{2} + 25 \, x - 25 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 19, normalized size = 0.76
method | result | size |
default | \(25 x -25 \ln \left (\frac {x}{12}+4\right )^{2}-25 \,{\mathrm e}^{x}\) | \(19\) |
norman | \(25 x -25 \ln \left (\frac {x}{12}+4\right )^{2}-25 \,{\mathrm e}^{x}\) | \(19\) |
risch | \(25 x -25 \ln \left (\frac {x}{12}+4\right )^{2}-25 \,{\mathrm e}^{x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 1200 \, e^{\left (-48\right )} E_{1}\left (-x - 48\right ) + 50 \, {\left (\log \relax (3) + 2 \, \log \relax (2)\right )} \log \left (x + 48\right ) - 25 \, \log \left (x + 48\right )^{2} + 25 \, x - \frac {25 \, x e^{x}}{x + 48} + 1200 \, \int \frac {e^{x}}{x^{2} + 96 \, x + 2304}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 18, normalized size = 0.72 \begin {gather*} -25\,{\ln \left (\frac {x}{12}+4\right )}^2+25\,x-25\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 17, normalized size = 0.68 \begin {gather*} 25 x - 25 e^{x} - 25 \log {\left (\frac {x}{12} + 4 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________