Optimal. Leaf size=18 \[ \log \left (\frac {e^{50 e^x} x}{6 (-4+x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1593, 6688, 2194, 36, 31, 29} \begin {gather*} 50 e^x-\log (4-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 1593
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+e^x \left (-200 x+50 x^2\right )}{(-4+x) x} \, dx\\ &=\int \left (50 e^x-\frac {4}{(-4+x) x}\right ) \, dx\\ &=-\left (4 \int \frac {1}{(-4+x) x} \, dx\right )+50 \int e^x \, dx\\ &=50 e^x-\int \frac {1}{-4+x} \, dx+\int \frac {1}{x} \, dx\\ &=50 e^x-\log (4-x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.89 \begin {gather*} 50 e^x-\log (4-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 13, normalized size = 0.72 \begin {gather*} 50 \, e^{x} - \log \left (x - 4\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 13, normalized size = 0.72 \begin {gather*} 50 \, e^{x} - \log \left (x - 4\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 14, normalized size = 0.78
method | result | size |
default | \(-\ln \left (x -4\right )+\ln \relax (x )+50 \,{\mathrm e}^{x}\) | \(14\) |
norman | \(-\ln \left (x -4\right )+\ln \relax (x )+50 \,{\mathrm e}^{x}\) | \(14\) |
risch | \(-\ln \left (x -4\right )+\ln \relax (x )+50 \,{\mathrm e}^{x}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 200 \, e^{4} E_{1}\left (-x + 4\right ) + \frac {50 \, x e^{x}}{x - 4} + 200 \, \int \frac {e^{x}}{x^{2} - 8 \, x + 16}\,{d x} - \log \left (x - 4\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 13, normalized size = 0.72 \begin {gather*} 50\,{\mathrm {e}}^x-\ln \left (x-4\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.67 \begin {gather*} 50 e^{x} + \log {\relax (x )} - \log {\left (x - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________