Optimal. Leaf size=19 \[ \log \left (\frac {16 \left (x+e^{3+x} x\right )}{2-x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.67, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {6741, 6742, 2282, 36, 29, 31, 893} \begin {gather*} \log \left (e^{x+3}+1\right )-\log (2-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 893
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x-e^{3+x} x \left (-2-2 x+x^2\right )}{\left (1+e^{3+x}\right ) (2-x) x^2} \, dx\\ &=\int \left (-\frac {1}{1+e^{3+x}}+\frac {-2-2 x+x^2}{(-2+x) x}\right ) \, dx\\ &=-\int \frac {1}{1+e^{3+x}} \, dx+\int \frac {-2-2 x+x^2}{(-2+x) x} \, dx\\ &=\int \left (1+\frac {1}{2-x}+\frac {1}{x}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x (1+x)} \, dx,x,e^{3+x}\right )\\ &=x-\log (2-x)+\log (x)-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{3+x}\right )+\operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,e^{3+x}\right )\\ &=\log \left (1+e^{3+x}\right )-\log (2-x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 1.00 \begin {gather*} \log \left (1+e^{3+x}\right )-\log (2-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 16, normalized size = 0.84 \begin {gather*} \log \left (x + e^{\left (x + \log \relax (x) + 3\right )}\right ) - \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 16, normalized size = 0.84 \begin {gather*} -\log \left (x - 2\right ) + \log \relax (x) + \log \left (e^{\left (x + 3\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 17, normalized size = 0.89
method | result | size |
norman | \(-\ln \left (x -2\right )+\ln \left ({\mathrm e}^{3+x +\ln \relax (x )}+x \right )\) | \(17\) |
risch | \(-\ln \left (x -2\right )-3+\ln \left ({\mathrm e}^{3+x} x +x \right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 1.00 \begin {gather*} \log \left ({\left (e^{\left (x + 3\right )} + 1\right )} e^{\left (-3\right )}\right ) - \log \left (x - 2\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.23, size = 16, normalized size = 0.84 \begin {gather*} \ln \left (x+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )-\ln \left (x-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.79 \begin {gather*} \log {\relax (x )} - \log {\left (x - 2 \right )} + \log {\left (e^{x + 3} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________