Optimal. Leaf size=19 \[ e^{\frac {256}{\log ^2\left (5-2 x-x^2+\log (x)\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6706} \begin {gather*} e^{\frac {256}{\log ^2\left (-x^2-2 x+\log (x)+5\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {256}{\log ^2\left (5-2 x-x^2+\log (x)\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 19, normalized size = 1.00 \begin {gather*} e^{\frac {256}{\log ^2\left (5-2 x-x^2+\log (x)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 18, normalized size = 0.95 \begin {gather*} e^{\left (\frac {256}{\log \left (-x^{2} - 2 \, x + \log \relax (x) + 5\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 18, normalized size = 0.95 \begin {gather*} e^{\left (\frac {256}{\log \left (-x^{2} - 2 \, x + \log \relax (x) + 5\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\frac {256}{\ln \left (\ln \relax (x )-x^{2}-2 x +5\right )^{2}}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 101, normalized size = 5.32 \begin {gather*} \frac {2 \, x^{2} e^{\left (\frac {256}{\log \left (-x^{2} - 2 \, x + \log \relax (x) + 5\right )^{2}}\right )}}{2 \, x^{2} + 2 \, x - 1} + \frac {2 \, x e^{\left (\frac {256}{\log \left (-x^{2} - 2 \, x + \log \relax (x) + 5\right )^{2}}\right )}}{2 \, x^{2} + 2 \, x - 1} - \frac {e^{\left (\frac {256}{\log \left (-x^{2} - 2 \, x + \log \relax (x) + 5\right )^{2}}\right )}}{2 \, x^{2} + 2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.50, size = 18, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{\frac {256}{{\ln \left (\ln \relax (x)-2\,x-x^2+5\right )}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.22, size = 17, normalized size = 0.89 \begin {gather*} e^{\frac {256}{\log {\left (- x^{2} - 2 x + \log {\relax (x )} + 5 \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________