Optimal. Leaf size=20 \[ e^{-16+x} \left (2+x-\frac {x^2}{13}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 36, normalized size of antiderivative = 1.80, number of steps used = 12, number of rules used = 6, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {12, 14, 2194, 2178, 2176, 2554} \begin {gather*} -\frac {1}{13} e^{x-16} x^2+e^{x-16} x+2 e^{x-16}-e^{x-16} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{13} \int \frac {e^{-16+x} \left (-13+39 x+11 x^2-x^3\right )-13 e^{-16+x} x \log (x)}{x} \, dx\\ &=\frac {1}{13} \int \left (39 e^{-16+x}-\frac {13 e^{-16+x}}{x}+11 e^{-16+x} x-e^{-16+x} x^2-13 e^{-16+x} \log (x)\right ) \, dx\\ &=-\left (\frac {1}{13} \int e^{-16+x} x^2 \, dx\right )+\frac {11}{13} \int e^{-16+x} x \, dx+3 \int e^{-16+x} \, dx-\int \frac {e^{-16+x}}{x} \, dx-\int e^{-16+x} \log (x) \, dx\\ &=3 e^{-16+x}+\frac {11}{13} e^{-16+x} x-\frac {1}{13} e^{-16+x} x^2-\frac {\text {Ei}(x)}{e^{16}}-e^{-16+x} \log (x)+\frac {2}{13} \int e^{-16+x} x \, dx-\frac {11}{13} \int e^{-16+x} \, dx+\int \frac {e^{-16+x}}{x} \, dx\\ &=\frac {28 e^{-16+x}}{13}+e^{-16+x} x-\frac {1}{13} e^{-16+x} x^2-e^{-16+x} \log (x)-\frac {2}{13} \int e^{-16+x} \, dx\\ &=2 e^{-16+x}+e^{-16+x} x-\frac {1}{13} e^{-16+x} x^2-e^{-16+x} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 21, normalized size = 1.05 \begin {gather*} -\frac {1}{13} e^{-16+x} \left (-26-13 x+x^2+13 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 23, normalized size = 1.15 \begin {gather*} -\frac {1}{13} \, {\left (x^{2} - 13 \, x - 26\right )} e^{\left (x - 16\right )} - e^{\left (x - 16\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 26, normalized size = 1.30 \begin {gather*} -\frac {1}{13} \, {\left (x^{2} e^{x} - 13 \, x e^{x} + 13 \, e^{x} \log \relax (x) - 26 \, e^{x}\right )} e^{\left (-16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.20
method | result | size |
risch | \(-{\mathrm e}^{x -16} \ln \relax (x )-\frac {\left (x^{2}-13 x -26\right ) {\mathrm e}^{x -16}}{13}\) | \(24\) |
norman | \(x \,{\mathrm e}^{x -16}-\frac {x^{2} {\mathrm e}^{x -16}}{13}-{\mathrm e}^{x -16} \ln \relax (x )+2 \,{\mathrm e}^{x -16}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 38, normalized size = 1.90 \begin {gather*} -\frac {1}{13} \, {\left (x^{2} - 2 \, x + 2\right )} e^{\left (x - 16\right )} + \frac {11}{13} \, {\left (x - 1\right )} e^{\left (x - 16\right )} - e^{\left (x - 16\right )} \log \relax (x) + 3 \, e^{\left (x - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{x-16}\,\left (x-\ln \relax (x)-\frac {x^2}{13}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 19, normalized size = 0.95 \begin {gather*} \frac {\left (- x^{2} + 13 x - 13 \log {\relax (x )} + 26\right ) e^{x - 16}}{13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________