Optimal. Leaf size=28 \[ 2+\frac {1}{2} \left (25+e^{x \left (e^5+x\right )}-\frac {x}{7}+\log \left (x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [C] time = 0.99, antiderivative size = 244, normalized size of antiderivative = 8.71, number of steps used = 23, number of rules used = 11, integrand size = 116, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {12, 14, 2244, 2236, 6686, 6742, 2234, 2204, 2240, 2241, 2554} \begin {gather*} -\frac {1}{28} e^{5-\frac {e^{10}}{4}} \left (350-e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (2 x+e^5\right )\right )-\frac {1}{14} e^{-\frac {e^{10}}{4}} \left (1-175 e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (2 x+e^5\right )\right )-\frac {1}{28} e^{10-\frac {e^{10}}{4}} \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (2 x+e^5\right )\right )+\frac {1}{14} e^{-\frac {e^{10}}{4}} \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (2 x+e^5\right )\right )+\frac {1}{14} e^{x^2+e^5 x+5}+\frac {1}{2} e^{2 x^2+2 e^5 x}-\frac {1}{7} e^{x^2+e^5 x} x+\frac {1}{14} \left (350-e^5\right ) e^{x^2+e^5 x}+\frac {1}{98} \left (7 \log \left (x^2\right )-x+175\right )^2+e^{x^2+e^5 x} \log \left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2204
Rule 2234
Rule 2236
Rule 2240
Rule 2241
Rule 2244
Rule 2554
Rule 6686
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{49} \int \frac {2450-189 x+x^2+e^{2 e^5 x+2 x^2} \left (49 e^5 x+98 x^2\right )+e^{e^5 x+x^2} \left (98-7 x+2450 x^2-14 x^3+e^5 \left (1225 x-7 x^2\right )\right )+\left (98-7 x+e^{e^5 x+x^2} \left (49 e^5 x+98 x^2\right )\right ) \log \left (x^2\right )}{x} \, dx\\ &=\frac {1}{49} \int \left (49 e^{2 x \left (e^5+x\right )} \left (e^5+2 x\right )+\frac {(-14+x) \left (-175+x-7 \log \left (x^2\right )\right )}{x}+\frac {7 e^{e^5 x+x^2} \left (14-\left (1-175 e^5\right ) x+350 \left (1-\frac {e^5}{350}\right ) x^2-2 x^3+7 e^5 x \log \left (x^2\right )+14 x^2 \log \left (x^2\right )\right )}{x}\right ) \, dx\\ &=\frac {1}{49} \int \frac {(-14+x) \left (-175+x-7 \log \left (x^2\right )\right )}{x} \, dx+\frac {1}{7} \int \frac {e^{e^5 x+x^2} \left (14-\left (1-175 e^5\right ) x+350 \left (1-\frac {e^5}{350}\right ) x^2-2 x^3+7 e^5 x \log \left (x^2\right )+14 x^2 \log \left (x^2\right )\right )}{x} \, dx+\int e^{2 x \left (e^5+x\right )} \left (e^5+2 x\right ) \, dx\\ &=\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2+\frac {1}{7} \int \left (\frac {e^{e^5 x+x^2} \left (14-\left (1-175 e^5\right ) x+\left (350-e^5\right ) x^2-2 x^3\right )}{x}+7 e^{e^5 x+x^2} \left (e^5+2 x\right ) \log \left (x^2\right )\right ) \, dx+\int e^{2 e^5 x+2 x^2} \left (e^5+2 x\right ) \, dx\\ &=\frac {1}{2} e^{2 e^5 x+2 x^2}+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2+\frac {1}{7} \int \frac {e^{e^5 x+x^2} \left (14-\left (1-175 e^5\right ) x+\left (350-e^5\right ) x^2-2 x^3\right )}{x} \, dx+\int e^{e^5 x+x^2} \left (e^5+2 x\right ) \log \left (x^2\right ) \, dx\\ &=\frac {1}{2} e^{2 e^5 x+2 x^2}+e^{e^5 x+x^2} \log \left (x^2\right )+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2+\frac {1}{7} \int \left (e^{e^5 x+x^2} \left (-1+175 e^5\right )+\frac {14 e^{e^5 x+x^2}}{x}+e^{e^5 x+x^2} \left (350-e^5\right ) x-2 e^{e^5 x+x^2} x^2\right ) \, dx-\int \frac {2 e^{e^5 x+x^2}}{x} \, dx\\ &=\frac {1}{2} e^{2 e^5 x+2 x^2}+e^{e^5 x+x^2} \log \left (x^2\right )+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2-\frac {2}{7} \int e^{e^5 x+x^2} x^2 \, dx+\frac {1}{7} \left (350-e^5\right ) \int e^{e^5 x+x^2} x \, dx+\frac {1}{7} \left (-1+175 e^5\right ) \int e^{e^5 x+x^2} \, dx\\ &=\frac {1}{2} e^{2 e^5 x+2 x^2}+\frac {1}{14} e^{e^5 x+x^2} \left (350-e^5\right )-\frac {1}{7} e^{e^5 x+x^2} x+e^{e^5 x+x^2} \log \left (x^2\right )+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2+\frac {1}{7} \int e^{e^5 x+x^2} \, dx+\frac {1}{7} e^5 \int e^{e^5 x+x^2} x \, dx-\frac {1}{7} \left (e^{-\frac {e^{10}}{4}} \left (1-175 e^5\right )\right ) \int e^{\frac {1}{4} \left (e^5+2 x\right )^2} \, dx-\frac {1}{14} \left (e^5 \left (350-e^5\right )\right ) \int e^{e^5 x+x^2} \, dx\\ &=\frac {1}{14} e^{5+e^5 x+x^2}+\frac {1}{2} e^{2 e^5 x+2 x^2}+\frac {1}{14} e^{e^5 x+x^2} \left (350-e^5\right )-\frac {1}{7} e^{e^5 x+x^2} x-\frac {1}{14} e^{-\frac {e^{10}}{4}} \left (1-175 e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )+e^{e^5 x+x^2} \log \left (x^2\right )+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2-\frac {1}{14} e^{10} \int e^{e^5 x+x^2} \, dx+\frac {1}{7} e^{-\frac {e^{10}}{4}} \int e^{\frac {1}{4} \left (e^5+2 x\right )^2} \, dx-\frac {1}{14} \left (e^{5-\frac {e^{10}}{4}} \left (350-e^5\right )\right ) \int e^{\frac {1}{4} \left (e^5+2 x\right )^2} \, dx\\ &=\frac {1}{14} e^{5+e^5 x+x^2}+\frac {1}{2} e^{2 e^5 x+2 x^2}+\frac {1}{14} e^{e^5 x+x^2} \left (350-e^5\right )-\frac {1}{7} e^{e^5 x+x^2} x+\frac {1}{14} e^{-\frac {e^{10}}{4}} \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )-\frac {1}{14} e^{-\frac {e^{10}}{4}} \left (1-175 e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )-\frac {1}{28} e^{5-\frac {e^{10}}{4}} \left (350-e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )+e^{e^5 x+x^2} \log \left (x^2\right )+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2-\frac {1}{14} e^{10-\frac {e^{10}}{4}} \int e^{\frac {1}{4} \left (e^5+2 x\right )^2} \, dx\\ &=\frac {1}{14} e^{5+e^5 x+x^2}+\frac {1}{2} e^{2 e^5 x+2 x^2}+\frac {1}{14} e^{e^5 x+x^2} \left (350-e^5\right )-\frac {1}{7} e^{e^5 x+x^2} x+\frac {1}{14} e^{-\frac {e^{10}}{4}} \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )-\frac {1}{28} e^{10-\frac {e^{10}}{4}} \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )-\frac {1}{14} e^{-\frac {e^{10}}{4}} \left (1-175 e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )-\frac {1}{28} e^{5-\frac {e^{10}}{4}} \left (350-e^5\right ) \sqrt {\pi } \text {erfi}\left (\frac {1}{2} \left (e^5+2 x\right )\right )+e^{e^5 x+x^2} \log \left (x^2\right )+\frac {1}{98} \left (175-x+7 \log \left (x^2\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 0.93 \begin {gather*} \frac {1}{98} \left (-175-7 e^{x \left (e^5+x\right )}+x-7 \log \left (x^2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 65, normalized size = 2.32 \begin {gather*} \frac {1}{98} \, x^{2} - \frac {1}{7} \, {\left (x - 175\right )} e^{\left (x^{2} + x e^{5}\right )} - \frac {1}{7} \, {\left (x - 7 \, e^{\left (x^{2} + x e^{5}\right )} - 175\right )} \log \left (x^{2}\right ) + \frac {1}{2} \, \log \left (x^{2}\right )^{2} - \frac {25}{7} \, x + \frac {1}{2} \, e^{\left (2 \, x^{2} + 2 \, x e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 79, normalized size = 2.82 \begin {gather*} \frac {1}{98} \, x^{2} - \frac {1}{7} \, x e^{\left (x^{2} + x e^{5}\right )} - \frac {1}{7} \, x \log \left (x^{2}\right ) + e^{\left (x^{2} + x e^{5}\right )} \log \left (x^{2}\right ) + \frac {1}{2} \, \log \left (x^{2}\right )^{2} - \frac {25}{7} \, x + \frac {1}{2} \, e^{\left (2 \, x^{2} + 2 \, x e^{5}\right )} + 25 \, e^{\left (x^{2} + x e^{5}\right )} + 50 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.23, size = 103, normalized size = 3.68
method | result | size |
default | \(\frac {{\mathrm e}^{2 x \,{\mathrm e}^{5}+2 x^{2}}}{2}+{\mathrm e}^{x \,{\mathrm e}^{5}+x^{2}} \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )+25 \,{\mathrm e}^{x \,{\mathrm e}^{5}+x^{2}}-\frac {{\mathrm e}^{x \,{\mathrm e}^{5}+x^{2}} x}{7}+2 \ln \relax (x ) {\mathrm e}^{x \,{\mathrm e}^{5}+x^{2}}+\frac {x^{2}}{98}-\frac {25 x}{7}+50 \ln \relax (x )+2 \ln \relax (x ) \ln \left (x^{2}\right )-2 \ln \relax (x )^{2}-\frac {x \ln \left (x^{2}\right )}{7}\) | \(103\) |
risch | \(2 \ln \relax (x )^{2}+\frac {\left (-14 x +98 \,{\mathrm e}^{\left ({\mathrm e}^{5}+x \right ) x}\right ) \ln \relax (x )}{49}-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{7}-i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\frac {x^{2}}{98}-\frac {25 x}{7}-\frac {i {\mathrm e}^{\left ({\mathrm e}^{5}+x \right ) x} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{14}+50 \ln \relax (x )+\frac {{\mathrm e}^{2 \left ({\mathrm e}^{5}+x \right ) x}}{2}+i {\mathrm e}^{\left ({\mathrm e}^{5}+x \right ) x} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {i {\mathrm e}^{\left ({\mathrm e}^{5}+x \right ) x} \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}+\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{14}-\frac {{\mathrm e}^{\left ({\mathrm e}^{5}+x \right ) x} x}{7}+25 \,{\mathrm e}^{\left ({\mathrm e}^{5}+x \right ) x}\) | \(243\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{14} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + \frac {1}{2} i \, e^{5}\right ) e^{\left (-\frac {1}{4} \, e^{10}\right )} + \frac {1}{98} \, x^{2} - \frac {2}{7} \, x \log \relax (x) + 2 \, \log \relax (x)^{2} - \frac {25}{7} \, x + \frac {1}{2} \, e^{\left (2 \, x^{2} + 2 \, x e^{5}\right )} + \frac {1}{49} \, \int -\frac {7 \, {\left (2 \, x^{3} + x^{2} {\left (e^{5} - 350\right )} - 175 \, x e^{5} - 14 \, {\left (2 \, x^{2} + x e^{5}\right )} \log \relax (x) - 14\right )} e^{\left (x^{2} + x e^{5}\right )}}{x}\,{d x} + 50 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 81, normalized size = 2.89 \begin {gather*} \frac {{\mathrm {e}}^{2\,x^2+2\,{\mathrm {e}}^5\,x}}{2}-\frac {25\,x}{7}+25\,\ln \left (x^2\right )+25\,{\mathrm {e}}^{x^2+{\mathrm {e}}^5\,x}-\frac {x\,\ln \left (x^2\right )}{7}+\ln \left (x^2\right )\,{\mathrm {e}}^{x^2+{\mathrm {e}}^5\,x}+\frac {{\ln \left (x^2\right )}^2}{2}-\frac {x\,{\mathrm {e}}^{x^2+{\mathrm {e}}^5\,x}}{7}+\frac {x^2}{98} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.61, size = 70, normalized size = 2.50 \begin {gather*} \frac {x^{2}}{98} - \frac {x \log {\left (x^{2} \right )}}{7} - \frac {25 x}{7} + \frac {\left (- 2 x + 14 \log {\left (x^{2} \right )} + 350\right ) e^{x^{2} + x e^{5}}}{14} + \frac {e^{2 x^{2} + 2 x e^{5}}}{2} + 50 \log {\relax (x )} + \frac {\log {\left (x^{2} \right )}^{2}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________