Optimal. Leaf size=32 \[ 3 \log \left (x-x^2 \left (-2+\frac {\log \left (x+\frac {e^{-1+x}}{4+x}\right )}{x}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 8.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60 x+81 x^2+24 x^3+\frac {e^{-1+x} \left (-12+57 x+12 x^2\right )}{4+x}+\left (24-42 x-12 x^2+\frac {e^{-1+x} (-30-6 x)}{4+x}\right ) \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{-4 x^2+15 x^3+4 x^4+\frac {e^{-1+x} \left (-4 x+15 x^2+4 x^3\right )}{4+x}+\left (-16 x^2-4 x^3+\frac {e^{-1+x} \left (-16 x-4 x^2\right )}{4+x}\right ) \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\left (e^{-1+x}+4 x+x^2\right ) \log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (e x (4+x)^2 (-5+8 x)+e^x \left (-4+19 x+4 x^2\right )-2 \left (e^x (5+x)+e (4+x)^2 (-1+2 x)\right ) \log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{(4+x) \left (e^x+e x (4+x)\right ) \left (x (-1+4 x)-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx\\ &=3 \int \frac {e x (4+x)^2 (-5+8 x)+e^x \left (-4+19 x+4 x^2\right )-2 \left (e^x (5+x)+e (4+x)^2 (-1+2 x)\right ) \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (e^x+e x (4+x)\right ) \left (x (-1+4 x)-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx\\ &=3 \int \left (\frac {2 e \left (-4+2 x+x^2\right ) \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}+\frac {-4+19 x+4 x^2-10 \log \left (x+\frac {e^{-1+x}}{4+x}\right )-2 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}\right ) \, dx\\ &=3 \int \frac {-4+19 x+4 x^2-10 \log \left (x+\frac {e^{-1+x}}{4+x}\right )-2 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx+(6 e) \int \frac {\left (-4+2 x+x^2\right ) \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx\\ &=3 \int \left (-\frac {4}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}+\frac {19 x}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}+\frac {4 x^2}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}-\frac {10 \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}-\frac {2 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}\right ) \, dx+(6 e) \int \left (-\frac {4 \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}+\frac {2 x \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}+\frac {x^2 \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )}\right ) \, dx\\ &=-\left (6 \int \frac {x \log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx\right )-12 \int \frac {1}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx+12 \int \frac {x^2}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx-30 \int \frac {\log \left (x+\frac {e^{-1+x}}{4+x}\right )}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx+57 \int \frac {x}{(4+x) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx+(6 e) \int \frac {x^2 \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx+(12 e) \int \frac {x \left (2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx-(24 e) \int \frac {2 x-\log \left (x+\frac {e^{-1+x}}{4+x}\right )}{\left (e^x+4 e x+e x^2\right ) \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 45, normalized size = 1.41 \begin {gather*} 3 \log \left (-x+4 x^2-4 x \log \left (x+\frac {e^{-1+x}}{4+x}\right )+\log ^2\left (x+\frac {e^{-1+x}}{4+x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 43, normalized size = 1.34 \begin {gather*} 3 \, \log \left (4 \, x^{2} - 4 \, x \log \left (x + e^{\left (x - \log \left (x + 4\right ) - 1\right )}\right ) + \log \left (x + e^{\left (x - \log \left (x + 4\right ) - 1\right )}\right )^{2} - x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.20, size = 105, normalized size = 3.28 \begin {gather*} 3 \, \log \left (4 \, x^{2} - 4 \, x \log \left (x^{2} e + 4 \, x e + e^{x}\right ) + \log \left (x^{2} e + 4 \, x e + e^{x}\right )^{2} + 4 \, x \log \left (x + 4\right ) - 2 \, \log \left (x^{2} e + 4 \, x e + e^{x}\right ) \log \left (x + 4\right ) + \log \left (x + 4\right )^{2} + 3 \, x - 2 \, \log \left (x^{2} e + 4 \, x e + e^{x}\right ) + 2 \, \log \left (x + 4\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 43, normalized size = 1.34
method | result | size |
risch | \(3 \ln \left (\ln \left (\frac {{\mathrm e}^{x -1}}{4+x}+x \right )^{2}-4 \ln \left (\frac {{\mathrm e}^{x -1}}{4+x}+x \right ) x +x \left (4 x -1\right )\right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 73, normalized size = 2.28 \begin {gather*} 3 \, \log \left (4 \, x^{2} - 2 \, {\left (2 \, x + \log \left (x + 4\right ) + 1\right )} \log \left (x^{2} e + 4 \, x e + e^{x}\right ) + \log \left (x^{2} e + 4 \, x e + e^{x}\right )^{2} + 2 \, {\left (2 \, x + 1\right )} \log \left (x + 4\right ) + \log \left (x + 4\right )^{2} + 3 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\,\left (12\,x^2+57\,x-12\right )-\ln \left (x+{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\right )\,\left (42\,x+{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\,\left (6\,x+30\right )+12\,x^2-24\right )-60\,x+81\,x^2+24\,x^3}{{\ln \left (x+{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\right )}^2\,\left (4\,x+{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\,\left (x+4\right )+x^2\right )-4\,x^2+15\,x^3+4\,x^4+{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\,\left (4\,x^3+15\,x^2-4\,x\right )-\ln \left (x+{\mathrm {e}}^{x-\ln \left (x+4\right )-1}\right )\,\left ({\mathrm {e}}^{x-\ln \left (x+4\right )-1}\,\left (4\,x^2+16\,x\right )+16\,x^2+4\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.79, size = 37, normalized size = 1.16 \begin {gather*} 3 \log {\left (4 x^{2} - 4 x \log {\left (x + \frac {e^{x - 1}}{x + 4} \right )} - x + \log {\left (x + \frac {e^{x - 1}}{x + 4} \right )}^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________