Optimal. Leaf size=25 \[ \frac {-e^x-e^{\log ^2(x)}+2 x}{5+x^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.89, antiderivative size = 53, normalized size of antiderivative = 2.12, number of steps used = 9, number of rules used = 5, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1594, 28, 6742, 2288, 383} \begin {gather*} \frac {2 x}{x^4+5}-\frac {e^x}{x^4+5}-\frac {e^{\log ^2(x)} \left (x^4 \log (x)+5 \log (x)\right )}{\left (x^4+5\right )^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 383
Rule 1594
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x-6 x^5+e^x \left (-5 x+4 x^4-x^5\right )+e^{\log ^2(x)} \left (4 x^4+\left (-10-2 x^4\right ) \log (x)\right )}{x \left (25+10 x^4+x^8\right )} \, dx\\ &=\int \frac {10 x-6 x^5+e^x \left (-5 x+4 x^4-x^5\right )+e^{\log ^2(x)} \left (4 x^4+\left (-10-2 x^4\right ) \log (x)\right )}{x \left (5+x^4\right )^2} \, dx\\ &=\int \left (-\frac {-10+5 e^x-4 e^x x^3+6 x^4+e^x x^4}{\left (5+x^4\right )^2}-\frac {2 e^{\log ^2(x)} \left (-2 x^4+5 \log (x)+x^4 \log (x)\right )}{x \left (5+x^4\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\log ^2(x)} \left (-2 x^4+5 \log (x)+x^4 \log (x)\right )}{x \left (5+x^4\right )^2} \, dx\right )-\int \frac {-10+5 e^x-4 e^x x^3+6 x^4+e^x x^4}{\left (5+x^4\right )^2} \, dx\\ &=-\frac {e^{\log ^2(x)} \left (5 \log (x)+x^4 \log (x)\right )}{\left (5+x^4\right )^2 \log (x)}-\int \left (\frac {e^x \left (5-4 x^3+x^4\right )}{\left (5+x^4\right )^2}+\frac {2 \left (-5+3 x^4\right )}{\left (5+x^4\right )^2}\right ) \, dx\\ &=-\frac {e^{\log ^2(x)} \left (5 \log (x)+x^4 \log (x)\right )}{\left (5+x^4\right )^2 \log (x)}-2 \int \frac {-5+3 x^4}{\left (5+x^4\right )^2} \, dx-\int \frac {e^x \left (5-4 x^3+x^4\right )}{\left (5+x^4\right )^2} \, dx\\ &=-\frac {e^x}{5+x^4}+\frac {2 x}{5+x^4}-\frac {e^{\log ^2(x)} \left (5 \log (x)+x^4 \log (x)\right )}{\left (5+x^4\right )^2 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 22, normalized size = 0.88 \begin {gather*} -\frac {e^x+e^{\log ^2(x)}-2 x}{5+x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 23, normalized size = 0.92 \begin {gather*} \frac {2 \, x - e^{\left (\log \relax (x)^{2}\right )} - e^{x}}{x^{4} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {6 \, x^{5} - 2 \, {\left (2 \, x^{4} - {\left (x^{4} + 5\right )} \log \relax (x)\right )} e^{\left (\log \relax (x)^{2}\right )} + {\left (x^{5} - 4 \, x^{4} + 5 \, x\right )} e^{x} - 10 \, x}{x^{9} + 10 \, x^{5} + 25 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.28
method | result | size |
risch | \(\frac {2 x -{\mathrm e}^{x}}{x^{4}+5}-\frac {{\mathrm e}^{\ln \relax (x )^{2}}}{x^{4}+5}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 28, normalized size = 1.12 \begin {gather*} \frac {2 \, x}{x^{4} + 5} - \frac {e^{\left (\log \relax (x)^{2}\right )} + e^{x}}{x^{4} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.45, size = 20, normalized size = 0.80 \begin {gather*} -\frac {{\mathrm {e}}^{{\ln \relax (x)}^2}-2\,x+{\mathrm {e}}^x}{x^4+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 27, normalized size = 1.08 \begin {gather*} \frac {2 x}{x^{4} + 5} - \frac {e^{x}}{x^{4} + 5} - \frac {e^{\log {\relax (x )}^{2}}}{x^{4} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________