Optimal. Leaf size=20 \[ 3+x+x \left (x+4 e^3 x\right ) \left (1+x^2+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.02, antiderivative size = 55, normalized size of antiderivative = 2.75, number of steps used = 5, number of rules used = 3, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 12, 2304} \begin {gather*} 4 e^3 x^4+x^4-\frac {1}{2} \left (1+4 e^3\right ) x^2+6 e^3 x^2+\frac {3 x^2}{2}+\left (1+4 e^3\right ) x^2 \log (x)+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\frac {3 x^2}{2}+x^4+e^3 \int \left (12 x+16 x^3\right ) \, dx+\int \left (2 x+8 e^3 x\right ) \log (x) \, dx\\ &=x+\frac {3 x^2}{2}+6 e^3 x^2+x^4+4 e^3 x^4+\int \left (2+8 e^3\right ) x \log (x) \, dx\\ &=x+\frac {3 x^2}{2}+6 e^3 x^2+x^4+4 e^3 x^4+\left (2 \left (1+4 e^3\right )\right ) \int x \log (x) \, dx\\ &=x+\frac {3 x^2}{2}+6 e^3 x^2-\frac {1}{2} \left (1+4 e^3\right ) x^2+x^4+4 e^3 x^4+\left (1+4 e^3\right ) x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 40, normalized size = 2.00 \begin {gather*} x+x^2+4 e^3 x^2+x^4+4 e^3 x^4+x^2 \log (x)+4 e^3 x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 33, normalized size = 1.65 \begin {gather*} x^{4} + x^{2} + 4 \, {\left (x^{4} + x^{2}\right )} e^{3} + {\left (4 \, x^{2} e^{3} + x^{2}\right )} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 45, normalized size = 2.25 \begin {gather*} x^{4} + 4 \, x^{2} e^{3} \log \relax (x) - 2 \, x^{2} e^{3} + x^{2} \log \relax (x) + x^{2} + 2 \, {\left (2 \, x^{4} + 3 \, x^{2}\right )} e^{3} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 35, normalized size = 1.75
method | result | size |
norman | \(x +\left (4 \,{\mathrm e}^{3}+1\right ) x^{2}+\left (4 \,{\mathrm e}^{3}+1\right ) x^{4}+\left (4 \,{\mathrm e}^{3}+1\right ) x^{2} \ln \relax (x )\) | \(35\) |
risch | \(4 x^{4} {\mathrm e}^{3}+4 \,{\mathrm e}^{3} x^{2} \ln \relax (x )+x^{4}+x^{2} \ln \relax (x )+4 x^{2} {\mathrm e}^{3}+x^{2}+x\) | \(38\) |
default | \(x +4 \,{\mathrm e}^{3} x^{2} \ln \relax (x )-2 x^{2} {\mathrm e}^{3}+x^{2} \ln \relax (x )+x^{2}+{\mathrm e}^{3} \left (4 x^{4}+6 x^{2}\right )+x^{4}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 50, normalized size = 2.50 \begin {gather*} x^{4} - \frac {1}{2} \, x^{2} {\left (4 \, e^{3} + 1\right )} + \frac {3}{2} \, x^{2} + 2 \, {\left (2 \, x^{4} + 3 \, x^{2}\right )} e^{3} + {\left (4 \, x^{2} e^{3} + x^{2}\right )} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 31, normalized size = 1.55 \begin {gather*} x+x^4\,\left (4\,{\mathrm {e}}^3+1\right )+x^2\,\left (4\,{\mathrm {e}}^3+\ln \relax (x)\,\left (4\,{\mathrm {e}}^3+1\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 36, normalized size = 1.80 \begin {gather*} x^{4} \left (1 + 4 e^{3}\right ) + x^{2} \left (1 + 4 e^{3}\right ) + x + \left (x^{2} + 4 x^{2} e^{3}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________