Optimal. Leaf size=27 \[ \frac {16}{x \left (2-\log \left (e^{\frac {2+x}{x}} x+x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.79, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 3, number of rules used = 3, integrand size = 147, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6688, 12, 6687} \begin {gather*} \frac {16}{x \left (2-\log \left (x \left (x+e^{\frac {2}{x}+1}\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 \left (-e^{1+\frac {2}{x}} (2+x)+x \left (e^{1+\frac {2}{x}}+x\right ) \log \left (x \left (e^{1+\frac {2}{x}}+x\right )\right )\right )}{x^3 \left (e^{1+\frac {2}{x}}+x\right ) \left (2-\log \left (x \left (e^{1+\frac {2}{x}}+x\right )\right )\right )^2} \, dx\\ &=16 \int \frac {-e^{1+\frac {2}{x}} (2+x)+x \left (e^{1+\frac {2}{x}}+x\right ) \log \left (x \left (e^{1+\frac {2}{x}}+x\right )\right )}{x^3 \left (e^{1+\frac {2}{x}}+x\right ) \left (2-\log \left (x \left (e^{1+\frac {2}{x}}+x\right )\right )\right )^2} \, dx\\ &=\frac {16}{x \left (2-\log \left (x \left (e^{1+\frac {2}{x}}+x\right )\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 23, normalized size = 0.85 \begin {gather*} -\frac {16}{x \left (-2+\log \left (x \left (e^{1+\frac {2}{x}}+x\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 25, normalized size = 0.93 \begin {gather*} -\frac {16}{x \log \left (x^{2} + x e^{\left (\frac {x + 2}{x}\right )}\right ) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 25, normalized size = 0.93 \begin {gather*} -\frac {16}{x \log \left (x^{2} + x e^{\left (\frac {x + 2}{x}\right )}\right ) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 145, normalized size = 5.37
method | result | size |
risch | \(-\frac {32 i}{x \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )\right )^{2}+\pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )\right )^{3}+2 i \ln \relax (x )+2 i \ln \left ({\mathrm e}^{\frac {2+x}{x}}+x \right )-4 i\right )}\) | \(145\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 25, normalized size = 0.93 \begin {gather*} -\frac {16}{x \log \left (x + e^{\left (\frac {2}{x} + 1\right )}\right ) + x \log \relax (x) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.46, size = 24, normalized size = 0.89 \begin {gather*} -\frac {16}{x\,\left (\ln \left (x^2+x\,\mathrm {e}\,{\mathrm {e}}^{2/x}\right )-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 20, normalized size = 0.74 \begin {gather*} - \frac {16}{x \log {\left (x^{2} + x e^{\frac {2 \left (\frac {x}{2} + 1\right )}{x}} \right )} - 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________