Optimal. Leaf size=30 \[ e^{16-x}+x+\left (\frac {x}{3}-\frac {e^3 x}{\log (\log (3+x))}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-18 e^6 x^2+\left (6 e^3 x^2+e^6 \left (54 x+18 x^2\right ) \log (3+x)\right ) \log (\log (3+x))+e^3 \left (-36 x-12 x^2\right ) \log (3+x) \log ^2(\log (3+x))+\left (27+e^{16-x} (-27-9 x)+15 x+2 x^2\right ) \log (3+x) \log ^3(\log (3+x))}{(27+9 x) \log (3+x) \log ^3(\log (3+x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{9} \left (9-9 e^{16-x}+2 x+\frac {18 e^6 x}{\log ^2(\log (3+x))}-\frac {12 e^3 x}{\log (\log (3+x))}+\frac {6 x^2 \left (-3 e^6+e^3 \log (\log (3+x))\right )}{(3+x) \log (3+x) \log ^3(\log (3+x))}\right ) \, dx\\ &=\frac {1}{9} \int \left (9-9 e^{16-x}+2 x+\frac {18 e^6 x}{\log ^2(\log (3+x))}-\frac {12 e^3 x}{\log (\log (3+x))}+\frac {6 x^2 \left (-3 e^6+e^3 \log (\log (3+x))\right )}{(3+x) \log (3+x) \log ^3(\log (3+x))}\right ) \, dx\\ &=x+\frac {x^2}{9}+\frac {2}{3} \int \frac {x^2 \left (-3 e^6+e^3 \log (\log (3+x))\right )}{(3+x) \log (3+x) \log ^3(\log (3+x))} \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx-\int e^{16-x} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {2}{3} \int \frac {e^3 x^2 \left (-3 e^3+\log (\log (3+x))\right )}{(3+x) \log (3+x) \log ^3(\log (3+x))} \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {1}{3} \left (2 e^3\right ) \int \frac {x^2 \left (-3 e^3+\log (\log (3+x))\right )}{(3+x) \log (3+x) \log ^3(\log (3+x))} \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {1}{3} \left (2 e^3\right ) \int \left (-\frac {3 e^3 x^2}{(3+x) \log (3+x) \log ^3(\log (3+x))}+\frac {x^2}{(3+x) \log (3+x) \log ^2(\log (3+x))}\right ) \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {1}{3} \left (2 e^3\right ) \int \frac {x^2}{(3+x) \log (3+x) \log ^2(\log (3+x))} \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx-\left (2 e^6\right ) \int \frac {x^2}{(3+x) \log (3+x) \log ^3(\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {1}{3} \left (2 e^3\right ) \int \left (-\frac {3}{\log (3+x) \log ^2(\log (3+x))}+\frac {x}{\log (3+x) \log ^2(\log (3+x))}+\frac {9}{(3+x) \log (3+x) \log ^2(\log (3+x))}\right ) \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx-\left (2 e^6\right ) \int \left (-\frac {3}{\log (3+x) \log ^3(\log (3+x))}+\frac {x}{\log (3+x) \log ^3(\log (3+x))}+\frac {9}{(3+x) \log (3+x) \log ^3(\log (3+x))}\right ) \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {1}{3} \left (2 e^3\right ) \int \frac {x}{\log (3+x) \log ^2(\log (3+x))} \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx-\left (2 e^3\right ) \int \frac {1}{\log (3+x) \log ^2(\log (3+x))} \, dx+\left (6 e^3\right ) \int \frac {1}{(3+x) \log (3+x) \log ^2(\log (3+x))} \, dx-\left (2 e^6\right ) \int \frac {x}{\log (3+x) \log ^3(\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx+\left (6 e^6\right ) \int \frac {1}{\log (3+x) \log ^3(\log (3+x))} \, dx-\left (18 e^6\right ) \int \frac {1}{(3+x) \log (3+x) \log ^3(\log (3+x))} \, dx\\ &=e^{16-x}+x+\frac {x^2}{9}+\frac {9 e^6}{\log ^2(\log (3+x))}-\frac {6 e^3}{\log (\log (3+x))}+\frac {1}{3} \left (2 e^3\right ) \int \frac {x}{\log (3+x) \log ^2(\log (3+x))} \, dx-\frac {1}{3} \left (4 e^3\right ) \int \frac {x}{\log (\log (3+x))} \, dx-\left (2 e^3\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x) \log ^2(\log (x))} \, dx,x,3+x\right )-\left (2 e^6\right ) \int \frac {x}{\log (3+x) \log ^3(\log (3+x))} \, dx+\left (2 e^6\right ) \int \frac {x}{\log ^2(\log (3+x))} \, dx+\left (6 e^6\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x) \log ^3(\log (x))} \, dx,x,3+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 50, normalized size = 1.67 \begin {gather*} \frac {1}{9} \left (9 e^{16-x}+9 x+x^2+\frac {9 e^6 x^2}{\log ^2(\log (3+x))}-\frac {6 e^3 x^2}{\log (\log (3+x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 53, normalized size = 1.77 \begin {gather*} -\frac {6 \, x^{2} e^{3} \log \left (\log \left (x + 3\right )\right ) - 9 \, x^{2} e^{6} - {\left (x^{2} + 9 \, x + 9 \, e^{\left (-x + 16\right )}\right )} \log \left (\log \left (x + 3\right )\right )^{2}}{9 \, \log \left (\log \left (x + 3\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 66, normalized size = 2.20 \begin {gather*} -\frac {6 \, x^{2} e^{3} \log \left (\log \left (x + 3\right )\right ) - x^{2} \log \left (\log \left (x + 3\right )\right )^{2} - 9 \, x^{2} e^{6} - 9 \, x \log \left (\log \left (x + 3\right )\right )^{2} - 9 \, e^{\left (-x + 16\right )} \log \left (\log \left (x + 3\right )\right )^{2}}{9 \, \log \left (\log \left (x + 3\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 40, normalized size = 1.33
method | result | size |
risch | \(\frac {x^{2}}{9}+x +{\mathrm e}^{16-x}+\frac {x^{2} {\mathrm e}^{3} \left (3 \,{\mathrm e}^{3}-2 \ln \left (\ln \left (3+x \right )\right )\right )}{3 \ln \left (\ln \left (3+x \right )\right )^{2}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 61, normalized size = 2.03 \begin {gather*} -\frac {{\left (6 \, x^{2} e^{\left (x + 3\right )} \log \left (\log \left (x + 3\right )\right ) - 9 \, x^{2} e^{\left (x + 6\right )} - {\left ({\left (x^{2} + 9 \, x\right )} e^{x} + 9 \, e^{16}\right )} \log \left (\log \left (x + 3\right )\right )^{2}\right )} e^{\left (-x\right )}}{9 \, \log \left (\log \left (x + 3\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 281, normalized size = 9.37 \begin {gather*} x+{\mathrm {e}}^{16-x}+\frac {x^2}{9}+6\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )-\frac {2\,x^2\,{\mathrm {e}}^3}{3\,\ln \left (\ln \left (x+3\right )\right )}+\frac {x^2\,{\mathrm {e}}^6}{{\ln \left (\ln \left (x+3\right )\right )}^2}+2\,x\,\ln \left (x+3\right )\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )+6\,x\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )+\frac {2\,x^2\,\ln \left (x+3\right )\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3}-\frac {54\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9}+\frac {4\,x^2\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3}-\frac {72\,x\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9}-\frac {12\,x^2\,\ln \left (x+3\right )\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9}-\frac {2\,x^3\,\ln \left (x+3\right )\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9}-\frac {30\,x^2\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9}-\frac {4\,x^3\,{\ln \left (x+3\right )}^2\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9}-\frac {18\,x\,\ln \left (x+3\right )\,{\mathrm {e}}^3\,\ln \left (\ln \left (x+3\right )\right )}{3\,x+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 44, normalized size = 1.47 \begin {gather*} \frac {x^{2}}{9} + x + \frac {- 2 x^{2} e^{3} \log {\left (\log {\left (x + 3 \right )} \right )} + 3 x^{2} e^{6}}{3 \log {\left (\log {\left (x + 3 \right )} \right )}^{2}} + e^{16 - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________