3.49.13 \(\int \frac {-e^4-e^e \log ^2(5)+x^2 \log ^2(5)}{x^2 \log ^2(5)} \, dx\)

Optimal. Leaf size=20 \[ \frac {e^e+x+x^2+\frac {e^4}{\log ^2(5)}}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 18, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 14} \begin {gather*} x+\frac {e^e+\frac {e^4}{\log ^2(5)}}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-E^4 - E^E*Log[5]^2 + x^2*Log[5]^2)/(x^2*Log[5]^2),x]

[Out]

x + (E^E + E^4/Log[5]^2)/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-e^4-e^e \log ^2(5)+x^2 \log ^2(5)}{x^2} \, dx}{\log ^2(5)}\\ &=\frac {\int \left (\log ^2(5)-\frac {e^4+e^e \log ^2(5)}{x^2}\right ) \, dx}{\log ^2(5)}\\ &=x+\frac {e^e+\frac {e^4}{\log ^2(5)}}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 20, normalized size = 1.00 \begin {gather*} \frac {e^e}{x}+x+\frac {e^4}{x \log ^2(5)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-E^4 - E^E*Log[5]^2 + x^2*Log[5]^2)/(x^2*Log[5]^2),x]

[Out]

E^E/x + x + E^4/(x*Log[5]^2)

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 27, normalized size = 1.35 \begin {gather*} \frac {x^{2} \log \relax (5)^{2} + e^{e} \log \relax (5)^{2} + e^{4}}{x \log \relax (5)^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(5)^2*exp(exp(1))+x^2*log(5)^2-exp(4))/x^2/log(5)^2,x, algorithm="fricas")

[Out]

(x^2*log(5)^2 + e^e*log(5)^2 + e^4)/(x*log(5)^2)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 27, normalized size = 1.35 \begin {gather*} \frac {x \log \relax (5)^{2} + \frac {e^{e} \log \relax (5)^{2} + e^{4}}{x}}{\log \relax (5)^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(5)^2*exp(exp(1))+x^2*log(5)^2-exp(4))/x^2/log(5)^2,x, algorithm="giac")

[Out]

(x*log(5)^2 + (e^e*log(5)^2 + e^4)/x)/log(5)^2

________________________________________________________________________________________

maple [A]  time = 0.07, size = 20, normalized size = 1.00




method result size



risch \(x +\frac {{\mathrm e}^{{\mathrm e}}}{x}+\frac {{\mathrm e}^{4}}{\ln \relax (5)^{2} x}\) \(20\)
gosper \(\frac {x^{2} \ln \relax (5)^{2}+\ln \relax (5)^{2} {\mathrm e}^{{\mathrm e}}+{\mathrm e}^{4}}{\ln \relax (5)^{2} x}\) \(28\)
default \(\frac {x \ln \relax (5)^{2}-\frac {-\ln \relax (5)^{2} {\mathrm e}^{{\mathrm e}}-{\mathrm e}^{4}}{x}}{\ln \relax (5)^{2}}\) \(32\)
norman \(\frac {x^{2} \ln \relax (5)+\frac {\ln \relax (5)^{2} {\mathrm e}^{{\mathrm e}}+{\mathrm e}^{4}}{\ln \relax (5)}}{x \ln \relax (5)}\) \(32\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-ln(5)^2*exp(exp(1))+x^2*ln(5)^2-exp(4))/x^2/ln(5)^2,x,method=_RETURNVERBOSE)

[Out]

x+exp(exp(1))/x+1/ln(5)^2/x*exp(4)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 27, normalized size = 1.35 \begin {gather*} \frac {x \log \relax (5)^{2} + \frac {e^{e} \log \relax (5)^{2} + e^{4}}{x}}{\log \relax (5)^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(5)^2*exp(exp(1))+x^2*log(5)^2-exp(4))/x^2/log(5)^2,x, algorithm="maxima")

[Out]

(x*log(5)^2 + (e^e*log(5)^2 + e^4)/x)/log(5)^2

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 21, normalized size = 1.05 \begin {gather*} x+\frac {{\mathrm {e}}^4+{\mathrm {e}}^{\mathrm {e}}\,{\ln \relax (5)}^2}{x\,{\ln \relax (5)}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(4) - x^2*log(5)^2 + exp(exp(1))*log(5)^2)/(x^2*log(5)^2),x)

[Out]

x + (exp(4) + exp(exp(1))*log(5)^2)/(x*log(5)^2)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 26, normalized size = 1.30 \begin {gather*} \frac {x \log {\relax (5 )}^{2} + \frac {e^{e} \log {\relax (5 )}^{2} + e^{4}}{x}}{\log {\relax (5 )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-ln(5)**2*exp(exp(1))+x**2*ln(5)**2-exp(4))/x**2/ln(5)**2,x)

[Out]

(x*log(5)**2 + (exp(E)*log(5)**2 + exp(4))/x)/log(5)**2

________________________________________________________________________________________