Optimal. Leaf size=22 \[ \frac {4}{3} e^{\frac {e^{15}}{x}} x (3-2 \log (2))^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {12, 6688, 2288} \begin {gather*} \frac {4}{3} e^{\frac {e^{15}}{x}} x (3-\log (4))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{\frac {e^{15}}{x}} \left (-36 e^{15}+36 x+\left (48 e^{15}-48 x\right ) \log (2)+\left (-16 e^{15}+16 x\right ) \log ^2(2)\right )}{x} \, dx\\ &=\frac {1}{3} \int \frac {4 e^{\frac {e^{15}}{x}} \left (-e^{15}+x\right ) (3-\log (4))^2}{x} \, dx\\ &=\frac {1}{3} \left (4 (3-\log (4))^2\right ) \int \frac {e^{\frac {e^{15}}{x}} \left (-e^{15}+x\right )}{x} \, dx\\ &=\frac {4}{3} e^{\frac {e^{15}}{x}} x (3-\log (4))^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.91 \begin {gather*} \frac {4}{3} e^{\frac {e^{15}}{x}} x (-3+\log (4))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 25, normalized size = 1.14 \begin {gather*} \frac {4}{3} \, {\left (4 \, x \log \relax (2)^{2} - 12 \, x \log \relax (2) + 9 \, x\right )} e^{\left (\frac {e^{15}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 45, normalized size = 2.05 \begin {gather*} \frac {4}{3} \, {\left (4 \, e^{\left (\frac {e^{15}}{x} + 45\right )} \log \relax (2)^{2} - 12 \, e^{\left (\frac {e^{15}}{x} + 45\right )} \log \relax (2) + 9 \, e^{\left (\frac {e^{15}}{x} + 45\right )}\right )} x e^{\left (-45\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 22, normalized size = 1.00
method | result | size |
norman | \(\left (\frac {16 \ln \relax (2)^{2}}{3}-16 \ln \relax (2)+12\right ) x \,{\mathrm e}^{\frac {{\mathrm e}^{15}}{x}}\) | \(22\) |
gosper | \(\frac {4 x \left (4 \ln \relax (2)^{2}-12 \ln \relax (2)+9\right ) {\mathrm e}^{\frac {{\mathrm e}^{15}}{x}}}{3}\) | \(23\) |
risch | \(\frac {4 x \left (4 \ln \relax (2)^{2}-12 \ln \relax (2)+9\right ) {\mathrm e}^{\frac {{\mathrm e}^{15}}{x}}}{3}\) | \(23\) |
derivativedivides | \(-12 \,{\mathrm e}^{15} \left (-x \,{\mathrm e}^{-15} {\mathrm e}^{\frac {{\mathrm e}^{15}}{x}}-\expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )\right )-12 \,{\mathrm e}^{15} \expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )-16 \,{\mathrm e}^{\frac {{\mathrm e}^{15}}{x}} x \ln \relax (2)+\frac {16 \,{\mathrm e}^{\frac {{\mathrm e}^{15}}{x}} x \ln \relax (2)^{2}}{3}\) | \(71\) |
default | \(-12 \,{\mathrm e}^{15} \left (-x \,{\mathrm e}^{-15} {\mathrm e}^{\frac {{\mathrm e}^{15}}{x}}-\expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )\right )-12 \,{\mathrm e}^{15} \expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )-16 \,{\mathrm e}^{\frac {{\mathrm e}^{15}}{x}} x \ln \relax (2)+\frac {16 \,{\mathrm e}^{\frac {{\mathrm e}^{15}}{x}} x \ln \relax (2)^{2}}{3}\) | \(71\) |
meijerg | \(\left (\frac {16 \ln \relax (2)^{2}}{3}-16 \ln \relax (2)+12\right ) {\mathrm e}^{15} \left (-\frac {x \,{\mathrm e}^{-15} \left (2+\frac {2 \,{\mathrm e}^{15}}{x}\right )}{2}+x \,{\mathrm e}^{-15+\frac {{\mathrm e}^{15}}{x}}+\ln \left (-\frac {{\mathrm e}^{15}}{x}\right )+\expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )-14+\ln \relax (x )-i \pi +x \,{\mathrm e}^{-15}\right )+\frac {16 \ln \relax (2)^{2} {\mathrm e}^{15} \left (-\ln \left (-\frac {{\mathrm e}^{15}}{x}\right )-\expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )-\ln \relax (x )+15+i \pi \right )}{3}-16 \ln \relax (2) {\mathrm e}^{15} \left (-\ln \left (-\frac {{\mathrm e}^{15}}{x}\right )-\expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )-\ln \relax (x )+15+i \pi \right )+12 \,{\mathrm e}^{15} \left (-\ln \left (-\frac {{\mathrm e}^{15}}{x}\right )-\expIntegralEi \left (1, -\frac {{\mathrm e}^{15}}{x}\right )-\ln \relax (x )+15+i \pi \right )\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 85, normalized size = 3.86 \begin {gather*} \frac {16}{3} \, {\rm Ei}\left (\frac {e^{15}}{x}\right ) e^{15} \log \relax (2)^{2} - \frac {16}{3} \, e^{15} \Gamma \left (-1, -\frac {e^{15}}{x}\right ) \log \relax (2)^{2} - 16 \, {\rm Ei}\left (\frac {e^{15}}{x}\right ) e^{15} \log \relax (2) + 16 \, e^{15} \Gamma \left (-1, -\frac {e^{15}}{x}\right ) \log \relax (2) + 12 \, {\rm Ei}\left (\frac {e^{15}}{x}\right ) e^{15} - 12 \, e^{15} \Gamma \left (-1, -\frac {e^{15}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.47, size = 16, normalized size = 0.73 \begin {gather*} \frac {4\,x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{15}}{x}}\,{\left (\ln \relax (4)-3\right )}^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 26, normalized size = 1.18 \begin {gather*} \frac {\left (- 48 x \log {\relax (2 )} + 16 x \log {\relax (2 )}^{2} + 36 x\right ) e^{\frac {e^{15}}{x}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________