Optimal. Leaf size=33 \[ -1+\frac {x}{4 \left (\frac {x^2}{16}+\frac {\log (2)}{3}-\log \left ((-5+x) x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5760+1728 x+180 x^2-36 x^3+(-960+192 x) \log (2)+(2880-576 x) \log \left (-5 x^2+x^3\right )}{-45 x^4+9 x^5+\left (-480 x^2+96 x^3\right ) \log (2)+(-1280+256 x) \log ^2(2)+\left (1440 x^2-288 x^3+(7680-1536 x) \log (2)\right ) \log \left (-5 x^2+x^3\right )+(-11520+2304 x) \log ^2\left (-5 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 \left (-15 x^2+3 x^3+80 (6+\log (2))-16 x (9+\log (2))+48 (-5+x) \log \left ((-5+x) x^2\right )\right )}{(5-x) \left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2} \, dx\\ &=12 \int \frac {-15 x^2+3 x^3+80 (6+\log (2))-16 x (9+\log (2))+48 (-5+x) \log \left ((-5+x) x^2\right )}{(5-x) \left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2} \, dx\\ &=12 \int \left (-\frac {6 \left (80-24 x-5 x^2+x^3\right )}{(-5+x) \left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2}+\frac {1}{3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )}\right ) \, dx\\ &=12 \int \frac {1}{3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )} \, dx-72 \int \frac {80-24 x-5 x^2+x^3}{(-5+x) \left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2} \, dx\\ &=12 \int \frac {1}{3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )} \, dx-72 \int \left (-\frac {24}{\left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2}-\frac {40}{(-5+x) \left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2}+\frac {x^2}{\left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2}\right ) \, dx\\ &=12 \int \frac {1}{3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )} \, dx-72 \int \frac {x^2}{\left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2} \, dx+1728 \int \frac {1}{\left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2} \, dx+2880 \int \frac {1}{(-5+x) \left (3 x^2+16 \log (2)-48 \log \left ((-5+x) x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.69, size = 25, normalized size = 0.76 \begin {gather*} -\frac {12 x}{-3 x^2-16 \log (2)+48 \log \left ((-5+x) x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 27, normalized size = 0.82 \begin {gather*} \frac {12 \, x}{3 \, x^{2} + 16 \, \log \relax (2) - 48 \, \log \left (x^{3} - 5 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 27, normalized size = 0.82 \begin {gather*} \frac {12 \, x}{3 \, x^{2} + 16 \, \log \relax (2) - 48 \, \log \left (x^{3} - 5 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 28, normalized size = 0.85
method | result | size |
norman | \(\frac {12 x}{3 x^{2}+16 \ln \relax (2)-48 \ln \left (x^{3}-5 x^{2}\right )}\) | \(28\) |
risch | \(\frac {12 x}{3 x^{2}+16 \ln \relax (2)-48 \ln \left (x^{3}-5 x^{2}\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 25, normalized size = 0.76 \begin {gather*} \frac {12 \, x}{3 \, x^{2} + 16 \, \log \relax (2) - 48 \, \log \left (x - 5\right ) - 96 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {1728\,x+\ln \relax (2)\,\left (192\,x-960\right )-\ln \left (x^3-5\,x^2\right )\,\left (576\,x-2880\right )+180\,x^2-36\,x^3-5760}{\ln \left (x^3-5\,x^2\right )\,\left (\ln \relax (2)\,\left (1536\,x-7680\right )-1440\,x^2+288\,x^3\right )-{\ln \relax (2)}^2\,\left (256\,x-1280\right )+\ln \relax (2)\,\left (480\,x^2-96\,x^3\right )-{\ln \left (x^3-5\,x^2\right )}^2\,\left (2304\,x-11520\right )+45\,x^4-9\,x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.79 \begin {gather*} - \frac {12 x}{- 3 x^{2} + 48 \log {\left (x^{3} - 5 x^{2} \right )} - 16 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________