Optimal. Leaf size=26 \[ e^{-1+x+x^2} \left (4-e^{\frac {1}{e^3}}-e^{x^2} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 45, normalized size of antiderivative = 1.73, number of steps used = 5, number of rules used = 4, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {12, 2244, 2236, 2288} \begin {gather*} \left (4-e^{\frac {1}{e^3}}\right ) e^{x^2+x-1}-\frac {e^{2 x^2+x-1} \left (4 x^2+x\right )}{4 x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2236
Rule 2244
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^{x+x^2} \left (4+e^{\frac {1}{e^3}} (-1-2 x)+8 x\right )+e^{x+2 x^2} \left (-1-x-4 x^2\right )\right ) \, dx}{e}\\ &=\frac {\int e^{x+x^2} \left (4+e^{\frac {1}{e^3}} (-1-2 x)+8 x\right ) \, dx}{e}+\frac {\int e^{x+2 x^2} \left (-1-x-4 x^2\right ) \, dx}{e}\\ &=-\frac {e^{-1+x+2 x^2} \left (x+4 x^2\right )}{1+4 x}+\frac {\int e^{x+x^2} \left (4-e^{\frac {1}{e^3}}+2 \left (4-e^{\frac {1}{e^3}}\right ) x\right ) \, dx}{e}\\ &=e^{-1+x+x^2} \left (4-e^{\frac {1}{e^3}}\right )-\frac {e^{-1+x+2 x^2} \left (x+4 x^2\right )}{1+4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 24, normalized size = 0.92 \begin {gather*} -e^{-1+x+x^2} \left (-4+e^{\frac {1}{e^3}}+e^{x^2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 27, normalized size = 1.04 \begin {gather*} -{\left (x e^{\left (2 \, x^{2} + x\right )} + {\left (e^{\left (e^{\left (-3\right )}\right )} - 4\right )} e^{\left (x^{2} + x\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 27, normalized size = 1.04 \begin {gather*} -{\left (x e^{\left (2 \, x^{2} + x\right )} + {\left (e^{\left (e^{\left (-3\right )}\right )} - 4\right )} e^{\left (x^{2} + x\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 36, normalized size = 1.38
method | result | size |
default | \({\mathrm e}^{-1} \left (4 \,{\mathrm e}^{x^{2}+x}-{\mathrm e}^{x +x^{2}+{\mathrm e}^{-3}}-x \,{\mathrm e}^{2 x^{2}+x}\right )\) | \(36\) |
norman | \(-x \,{\mathrm e}^{-1} {\mathrm e}^{x} {\mathrm e}^{2 x^{2}}-{\mathrm e}^{-1} \left ({\mathrm e}^{{\mathrm e}^{-3}}-4\right ) {\mathrm e}^{x} {\mathrm e}^{x^{2}}\) | \(36\) |
risch | \(-x \,{\mathrm e}^{\left (x +1\right ) \left (2 x -1\right )}-{\mathrm e}^{x^{2}+x -1} {\mathrm e}^{{\mathrm e}^{-3}}+4 \,{\mathrm e}^{x^{2}+x -1}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 153, normalized size = 5.88 \begin {gather*} \frac {1}{2} \, {\left (-4 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + \frac {1}{2} i\right ) e^{\left (-\frac {1}{4}\right )} + i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + \frac {1}{2} i\right ) e^{\left (e^{\left (-3\right )} - \frac {1}{4}\right )} - 4 \, {\left (\frac {\sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 1\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} - 2 \, x e^{\left (2 \, x^{2} + x\right )} + {\left (\frac {\sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 1\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (e^{\left (-3\right )} - \frac {1}{4}\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 20, normalized size = 0.77 \begin {gather*} -{\mathrm {e}}^{x^2+x-1}\,\left ({\mathrm {e}}^{{\mathrm {e}}^{-3}}+x\,{\mathrm {e}}^{x^2}-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 44, normalized size = 1.69 \begin {gather*} \frac {- e x e^{x} e^{2 x^{2}} + \left (- e e^{x} e^{e^{-3}} + 4 e e^{x}\right ) e^{x^{2}}}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________