Optimal. Leaf size=31 \[ x+\frac {x}{x+\frac {1}{8} \left (2 x-\log (4)+\frac {5 x}{5+x \log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3065 x^2+(-200-550 x) \log (4)+25 \log ^2(4)+\left (40 x^2+1100 x^3+\left (-80 x-210 x^2\right ) \log (4)+10 x \log ^2(4)\right ) \log (x)+\left (100 x^4+\left (-8 x^2-20 x^3\right ) \log (4)+x^2 \log ^2(4)\right ) \log ^2(x)}{3025 x^2-550 x \log (4)+25 \log ^2(4)+\left (1100 x^3-210 x^2 \log (4)+10 x \log ^2(4)\right ) \log (x)+\left (100 x^4-20 x^3 \log (4)+x^2 \log ^2(4)\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (613 x^2-110 x \log (4)+5 (-8+\log (4)) \log (4)\right )+10 x \left (110 x^2+x (4-21 \log (4))+(-8+\log (4)) \log (4)\right ) \log (x)+x^2 \left (100 x^2-20 x \log (4)+(-8+\log (4)) \log (4)\right ) \log ^2(x)}{(55 x-5 \log (4)+x (10 x-\log (4)) \log (x))^2} \, dx\\ &=\int \left (\frac {100 x^2-20 x \log (4)-(8-\log (4)) \log (4)}{(10 x-\log (4))^2}+\frac {40 x \left (100 x^3-5 \log ^2(4)+x \log (4) (100+\log (4))-10 x^2 (55+\log (16))\right )}{(10 x-\log (4))^2 \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2}+\frac {40 x (10 x+\log (4))}{(10 x-\log (4))^2 \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )}\right ) \, dx\\ &=40 \int \frac {x \left (100 x^3-5 \log ^2(4)+x \log (4) (100+\log (4))-10 x^2 (55+\log (16))\right )}{(10 x-\log (4))^2 \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2} \, dx+40 \int \frac {x (10 x+\log (4))}{(10 x-\log (4))^2 \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )} \, dx+\int \frac {100 x^2-20 x \log (4)-(8-\log (4)) \log (4)}{(10 x-\log (4))^2} \, dx\\ &=40 \int \left (-\frac {11 x}{2 \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2}+\frac {x^2}{\left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2}-\frac {3 \log ^2(4)}{20 (10 x-\log (4)) \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2}-\frac {\log (4)}{10 \left (-55 x+5 \log (4)-10 x^2 \log (x)+x \log (4) \log (x)\right )^2}-\frac {\log ^3(4)}{20 (-10 x+\log (4))^2 \left (-55 x+5 \log (4)-10 x^2 \log (x)+x \log (4) \log (x)\right )^2}\right ) \, dx+40 \int \left (\frac {1}{10 \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )}+\frac {\log (64)}{10 (10 x-\log (4)) \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )}-\frac {\log ^2(4)}{5 (-10 x+\log (4))^2 \left (-55 x+5 \log (4)-10 x^2 \log (x)+x \log (4) \log (x)\right )}\right ) \, dx+\int \left (1-\frac {8 \log (4)}{(-10 x+\log (4))^2}\right ) \, dx\\ &=x+\frac {4 \log (4)}{5 (10 x-\log (4))}+4 \int \frac {1}{55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)} \, dx+40 \int \frac {x^2}{\left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2} \, dx-220 \int \frac {x}{\left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2} \, dx-(4 \log (4)) \int \frac {1}{\left (-55 x+5 \log (4)-10 x^2 \log (x)+x \log (4) \log (x)\right )^2} \, dx-\left (6 \log ^2(4)\right ) \int \frac {1}{(10 x-\log (4)) \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )^2} \, dx-\left (8 \log ^2(4)\right ) \int \frac {1}{(-10 x+\log (4))^2 \left (-55 x+5 \log (4)-10 x^2 \log (x)+x \log (4) \log (x)\right )} \, dx-\left (2 \log ^3(4)\right ) \int \frac {1}{(-10 x+\log (4))^2 \left (-55 x+5 \log (4)-10 x^2 \log (x)+x \log (4) \log (x)\right )^2} \, dx+(4 \log (64)) \int \frac {1}{(10 x-\log (4)) \left (55 x-5 \log (4)+10 x^2 \log (x)-x \log (4) \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 52, normalized size = 1.68 \begin {gather*} x+\frac {\log (256)}{50 x-5 \log (4)}-\frac {40 x^2}{(10 x-\log (4)) (55 x-5 \log (4)+x (10 x-\log (4)) \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 68, normalized size = 2.19 \begin {gather*} \frac {275 \, x^{2} - 10 \, {\left (5 \, x - 4\right )} \log \relax (2) + 2 \, {\left (25 \, x^{3} - {\left (5 \, x^{2} - 4 \, x\right )} \log \relax (2)\right )} \log \relax (x) - 20 \, x}{5 \, {\left (2 \, {\left (5 \, x^{2} - x \log \relax (2)\right )} \log \relax (x) + 55 \, x - 10 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 65, normalized size = 2.10 \begin {gather*} x - \frac {20 \, x^{2}}{50 \, x^{3} \log \relax (x) - 20 \, x^{2} \log \relax (2) \log \relax (x) + 2 \, x \log \relax (2)^{2} \log \relax (x) + 275 \, x^{2} - 105 \, x \log \relax (2) + 10 \, \log \relax (2)^{2}} + \frac {4 \, \log \relax (2)}{5 \, {\left (5 \, x - \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 64, normalized size = 2.06
method | result | size |
risch | \(\frac {5 x \ln \relax (2)-25 x^{2}-4 \ln \relax (2)}{5 \ln \relax (2)-25 x}-\frac {20 x^{2}}{\left (\ln \relax (2)-5 x \right ) \left (2 x \ln \relax (2) \ln \relax (x )-10 x^{2} \ln \relax (x )+10 \ln \relax (2)-55 x \right )}\) | \(64\) |
norman | \(\frac {\left (4-\ln \relax (2)\right ) x +\left (\frac {2 \ln \relax (2)^{2}}{5}-\frac {8 \ln \relax (2)}{5}\right ) x \ln \relax (x )-55 x^{2}-10 x^{3} \ln \relax (x )+2 \ln \relax (2)^{2}-8 \ln \relax (2)}{2 x \ln \relax (2) \ln \relax (x )-10 x^{2} \ln \relax (x )+10 \ln \relax (2)-55 x}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 68, normalized size = 2.19 \begin {gather*} \frac {275 \, x^{2} - 10 \, x {\left (5 \, \log \relax (2) + 2\right )} + 2 \, {\left (25 \, x^{3} - 5 \, x^{2} \log \relax (2) + 4 \, x \log \relax (2)\right )} \log \relax (x) + 40 \, \log \relax (2)}{5 \, {\left (2 \, {\left (5 \, x^{2} - x \log \relax (2)\right )} \log \relax (x) + 55 \, x - 10 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {100\,{\ln \relax (2)}^2-2\,\ln \relax (2)\,\left (550\,x+200\right )+{\ln \relax (x)}^2\,\left (4\,x^2\,{\ln \relax (2)}^2-2\,\ln \relax (2)\,\left (20\,x^3+8\,x^2\right )+100\,x^4\right )+3065\,x^2+\ln \relax (x)\,\left (40\,x\,{\ln \relax (2)}^2-2\,\ln \relax (2)\,\left (210\,x^2+80\,x\right )+40\,x^2+1100\,x^3\right )}{\ln \relax (x)\,\left (1100\,x^3-420\,\ln \relax (2)\,x^2+40\,{\ln \relax (2)}^2\,x\right )-1100\,x\,\ln \relax (2)+100\,{\ln \relax (2)}^2+3025\,x^2+{\ln \relax (x)}^2\,\left (100\,x^4-40\,\ln \relax (2)\,x^3+4\,{\ln \relax (2)}^2\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 63, normalized size = 2.03 \begin {gather*} - \frac {20 x^{2}}{275 x^{2} - 105 x \log {\relax (2 )} + \left (50 x^{3} - 20 x^{2} \log {\relax (2 )} + 2 x \log {\relax (2 )}^{2}\right ) \log {\relax (x )} + 10 \log {\relax (2 )}^{2}} + x + \frac {4 \log {\relax (2 )}}{25 x - 5 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________