Optimal. Leaf size=32 \[ -4 e^{1+e^{\frac {1}{5} \left (1+4 \left (-5 x+x^2\right )-\log (4)\right )}-x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.49, antiderivative size = 33, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 2, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {12, 6706} \begin {gather*} x-4 e^{\frac {e^{\frac {1}{5} \left (4 x^2-20 x+1\right )}}{2^{2/5}}-x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (5+4 e^{1+e^{\frac {1}{5} \left (1-20 x+4 x^2-\log (4)\right )}-x} \left (5+e^{\frac {1}{5} \left (1-20 x+4 x^2-\log (4)\right )} (20-8 x)\right )\right ) \, dx\\ &=x+\frac {4}{5} \int e^{1+e^{\frac {1}{5} \left (1-20 x+4 x^2-\log (4)\right )}-x} \left (5+e^{\frac {1}{5} \left (1-20 x+4 x^2-\log (4)\right )} (20-8 x)\right ) \, dx\\ &=-4 e^{1+\frac {e^{\frac {1}{5} \left (1-20 x+4 x^2\right )}}{2^{2/5}}-x}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.25, size = 65, normalized size = 2.03 \begin {gather*} \frac {1}{5} \int \left (5+4 e^{1+e^{\frac {1}{5} \left (1-20 x+4 x^2-\log (4)\right )}-x} \left (5+e^{\frac {1}{5} \left (1-20 x+4 x^2-\log (4)\right )} (20-8 x)\right )\right ) \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 29, normalized size = 0.91 \begin {gather*} x - e^{\left (-x + e^{\left (\frac {4}{5} \, x^{2} - 4 \, x - \frac {2}{5} \, \log \relax (2) + \frac {1}{5}\right )} + 2 \, \log \relax (2) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 29, normalized size = 0.91 \begin {gather*} x - e^{\left (-x + e^{\left (\frac {4}{5} \, x^{2} - 4 \, x - \frac {2}{5} \, \log \relax (2) + \frac {1}{5}\right )} + 2 \, \log \relax (2) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 27, normalized size = 0.84
method | result | size |
risch | \(x -4 \,{\mathrm e}^{\frac {2^{\frac {3}{5}} {\mathrm e}^{\frac {1}{5}+\frac {4}{5} x^{2}-4 x}}{2}+1-x}\) | \(27\) |
default | \(x -{\mathrm e}^{{\mathrm e}^{-\frac {2 \ln \relax (2)}{5}+\frac {4 x^{2}}{5}-4 x +\frac {1}{5}}+2 \ln \relax (2)-x +1}\) | \(30\) |
norman | \(x -{\mathrm e}^{{\mathrm e}^{-\frac {2 \ln \relax (2)}{5}+\frac {4 x^{2}}{5}-4 x +\frac {1}{5}}+2 \ln \relax (2)-x +1}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 26, normalized size = 0.81 \begin {gather*} x - 4 \, e^{\left (\frac {1}{2} \cdot 2^{\frac {3}{5}} e^{\left (\frac {4}{5} \, x^{2} - 4 \, x + \frac {1}{5}\right )} - x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 27, normalized size = 0.84 \begin {gather*} x-4\,{\mathrm {e}}^{\frac {2^{3/5}\,{\left ({\mathrm {e}}^{x^2}\right )}^{4/5}\,{\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{1/5}}{2}-x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 29, normalized size = 0.91 \begin {gather*} x - 4 e^{- x + \frac {2^{\frac {3}{5}} e^{\frac {4 x^{2}}{5} - 4 x + \frac {1}{5}}}{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________