Optimal. Leaf size=19 \[ 4+\log \left (e+4 x+x^2-\log \left (25 x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-4 x-2 x^2}{-e x-4 x^2-x^3+x \log \left (25 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4}{e+4 x+x^2-\log \left (25 x^2\right )}-\frac {2}{x \left (e+4 x+x^2-\log \left (25 x^2\right )\right )}+\frac {2 x}{e+4 x+x^2-\log \left (25 x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x \left (e+4 x+x^2-\log \left (25 x^2\right )\right )} \, dx\right )+2 \int \frac {x}{e+4 x+x^2-\log \left (25 x^2\right )} \, dx+4 \int \frac {1}{e+4 x+x^2-\log \left (25 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 16, normalized size = 0.84 \begin {gather*} \log \left (e+x (4+x)-\log \left (25 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 20, normalized size = 1.05 \begin {gather*} \log \left (-x^{2} - 4 \, x - e + \log \left (25 \, x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 1.05 \begin {gather*} \log \left (-x^{2} - 4 \, x - e + \log \left (25 \, x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 1.00
method | result | size |
norman | \(\ln \left (4 x +{\mathrm e}+x^{2}-\ln \left (25 x^{2}\right )\right )\) | \(19\) |
risch | \(\ln \left (-x^{2}-{\mathrm e}-4 x +\ln \left (25 x^{2}\right )\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 18, normalized size = 0.95 \begin {gather*} \log \left (-\frac {1}{2} \, x^{2} - 2 \, x - \frac {1}{2} \, e + \log \relax (5) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.36, size = 18, normalized size = 0.95 \begin {gather*} \ln \left (4\,x+\mathrm {e}-\ln \left (25\,x^2\right )+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.89 \begin {gather*} \log {\left (- x^{2} - 4 x + \log {\left (25 x^{2} \right )} - e \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________