3.48.62 \(\int \frac {4+\log (x)}{x^2} \, dx\)

Optimal. Leaf size=11 \[ \frac {-5+x-\log (x)}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.36, number of steps used = 1, number of rules used = 1, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2304} \begin {gather*} -\frac {1}{x}-\frac {\log (x)+4}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(4 + Log[x])/x^2,x]

[Out]

-x^(-1) - (4 + Log[x])/x

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\frac {1}{x}-\frac {4+\log (x)}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 13, normalized size = 1.18 \begin {gather*} -\frac {5}{x}-\frac {\log (x)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 + Log[x])/x^2,x]

[Out]

-5/x - Log[x]/x

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 9, normalized size = 0.82 \begin {gather*} -\frac {\log \relax (x) + 5}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x)+4)/x^2,x, algorithm="fricas")

[Out]

-(log(x) + 5)/x

________________________________________________________________________________________

giac [A]  time = 0.12, size = 13, normalized size = 1.18 \begin {gather*} -\frac {\log \relax (x)}{x} - \frac {5}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x)+4)/x^2,x, algorithm="giac")

[Out]

-log(x)/x - 5/x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 11, normalized size = 1.00




method result size



norman \(\frac {-5-\ln \relax (x )}{x}\) \(11\)
default \(-\frac {\ln \relax (x )}{x}-\frac {5}{x}\) \(14\)
risch \(-\frac {\ln \relax (x )}{x}-\frac {5}{x}\) \(14\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(x)+4)/x^2,x,method=_RETURNVERBOSE)

[Out]

(-5-ln(x))/x

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 15, normalized size = 1.36 \begin {gather*} -\frac {\log \relax (x) + 1}{x} - \frac {4}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x)+4)/x^2,x, algorithm="maxima")

[Out]

-(log(x) + 1)/x - 4/x

________________________________________________________________________________________

mupad [B]  time = 3.55, size = 9, normalized size = 0.82 \begin {gather*} -\frac {\ln \relax (x)+5}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x) + 4)/x^2,x)

[Out]

-(log(x) + 5)/x

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 8, normalized size = 0.73 \begin {gather*} - \frac {\log {\relax (x )}}{x} - \frac {5}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(x)+4)/x**2,x)

[Out]

-log(x)/x - 5/x

________________________________________________________________________________________