Optimal. Leaf size=28 \[ \frac {1}{3} x \left (5+\log \left (\frac {5 x}{8-e^4+\log (4)-\log \left (x^2\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.44, antiderivative size = 187, normalized size of antiderivative = 6.68, number of steps used = 15, number of rules used = 10, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6741, 12, 6742, 2300, 2178, 2361, 15, 6482, 2549, 2360} \begin {gather*} \frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (\log \left (\frac {x^2}{4}\right )+e^4-8\right )\right )}{3 \sqrt {x^2}}+\frac {2 e^{4-\frac {e^4}{2}} x \left (-\log \left (\frac {x^2}{4}\right )-e^4+8\right ) \text {Ei}\left (\frac {1}{2} \left (\log \left (\frac {x^2}{4}\right )+e^4-8\right )\right )}{\sqrt {x^2}}-\frac {2 e^{4-\frac {e^4}{2}} x \left (-3 \log \left (x^2\right )-3 e^4+25+\log (64)\right ) \text {Ei}\left (\frac {1}{2} \left (\log \left (\frac {x^2}{4}\right )+e^4-8\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{-\log \left (\frac {x^2}{4}\right )-e^4+8}\right )+\frac {5 x}{3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 15
Rule 2178
Rule 2300
Rule 2360
Rule 2361
Rule 2549
Rule 6482
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 \left (1-\frac {3}{25} \left (e^4-\log (4)\right )\right )-6 \log \left (x^2\right )-\left (-8+e^4-\log (4)+\log \left (x^2\right )\right ) \log \left (-\frac {5 x}{-8+e^4-\log (4)+\log \left (x^2\right )}\right )}{3 \left (8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )\right )} \, dx\\ &=\frac {1}{3} \int \frac {50 \left (1-\frac {3}{25} \left (e^4-\log (4)\right )\right )-6 \log \left (x^2\right )-\left (-8+e^4-\log (4)+\log \left (x^2\right )\right ) \log \left (-\frac {5 x}{-8+e^4-\log (4)+\log \left (x^2\right )}\right )}{8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {2 \left (25 \left (1-\frac {3}{25} \left (e^4-\log (4)\right )\right )-3 \log \left (x^2\right )\right )}{8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )}+\log \left (-\frac {5 x}{-8 \left (1-\frac {e^4}{8}\right )+\log \left (\frac {x^2}{4}\right )}\right )\right ) \, dx\\ &=\frac {1}{3} \int \log \left (-\frac {5 x}{-8 \left (1-\frac {e^4}{8}\right )+\log \left (\frac {x^2}{4}\right )}\right ) \, dx+\frac {2}{3} \int \frac {25 \left (1-\frac {3}{25} \left (e^4-\log (4)\right )\right )-3 \log \left (x^2\right )}{8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )} \, dx\\ &=-\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right ) \left (25-3 e^4+\log (64)-3 \log \left (x^2\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{8-e^4-\log \left (\frac {x^2}{4}\right )}\right )-\frac {1}{3} \int \frac {10 \left (1-\frac {e^4}{10}\right )-\log \left (\frac {x^2}{4}\right )}{8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )} \, dx-4 \int \frac {e^{4-\frac {e^4}{2}} \text {Ei}\left (\frac {1}{2} \left (-8 \left (1-\frac {e^4}{8}\right )+\log \left (\frac {x^2}{4}\right )\right )\right )}{\sqrt {x^2}} \, dx\\ &=-\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right ) \left (25-3 e^4+\log (64)-3 \log \left (x^2\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{8-e^4-\log \left (\frac {x^2}{4}\right )}\right )-\frac {1}{3} \int \left (1+\frac {-8 \left (1-\frac {e^4}{8}\right )+10 \left (1-\frac {e^4}{10}\right )}{8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )}\right ) \, dx-\left (4 e^{4-\frac {e^4}{2}}\right ) \int \frac {\text {Ei}\left (\frac {1}{2} \left (-8 \left (1-\frac {e^4}{8}\right )+\log \left (\frac {x^2}{4}\right )\right )\right )}{\sqrt {x^2}} \, dx\\ &=-\frac {x}{3}-\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right ) \left (25-3 e^4+\log (64)-3 \log \left (x^2\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{8-e^4-\log \left (\frac {x^2}{4}\right )}\right )-\frac {2}{3} \int \frac {1}{8 \left (1-\frac {e^4}{8}\right )-\log \left (\frac {x^2}{4}\right )} \, dx-\frac {\left (4 e^{4-\frac {e^4}{2}} x\right ) \int \frac {\text {Ei}\left (\frac {1}{2} \left (-8 \left (1-\frac {e^4}{8}\right )+\log \left (\frac {x^2}{4}\right )\right )\right )}{x} \, dx}{\sqrt {x^2}}\\ &=-\frac {x}{3}-\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right ) \left (25-3 e^4+\log (64)-3 \log \left (x^2\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{8-e^4-\log \left (\frac {x^2}{4}\right )}\right )-\frac {(2 x) \operatorname {Subst}\left (\int \frac {e^{x/2}}{8 \left (1-\frac {e^4}{8}\right )-x} \, dx,x,\log \left (\frac {x^2}{4}\right )\right )}{3 \sqrt {x^2}}-\frac {\left (2 e^{4-\frac {e^4}{2}} x\right ) \operatorname {Subst}\left (\int \text {Ei}\left (\frac {1}{2} \left (-8 \left (1-\frac {e^4}{8}\right )+x\right )\right ) \, dx,x,\log \left (\frac {x^2}{4}\right )\right )}{\sqrt {x^2}}\\ &=-\frac {x}{3}+\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right )}{3 \sqrt {x^2}}-\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right ) \left (25-3 e^4+\log (64)-3 \log \left (x^2\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{8-e^4-\log \left (\frac {x^2}{4}\right )}\right )-\frac {\left (4 e^{4-\frac {e^4}{2}} x\right ) \operatorname {Subst}\left (\int \text {Ei}(x) \, dx,x,-4 \left (1-\frac {e^4}{8}\right )+\frac {1}{2} \log \left (\frac {x^2}{4}\right )\right )}{\sqrt {x^2}}\\ &=\frac {5 x}{3}+\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right )}{3 \sqrt {x^2}}+\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4\right )+\frac {1}{2} \log \left (\frac {x^2}{4}\right )\right ) \left (8-e^4-\log \left (\frac {x^2}{4}\right )\right )}{\sqrt {x^2}}-\frac {2 e^{4-\frac {e^4}{2}} x \text {Ei}\left (\frac {1}{2} \left (-8+e^4+\log \left (\frac {x^2}{4}\right )\right )\right ) \left (25-3 e^4+\log (64)-3 \log \left (x^2\right )\right )}{3 \sqrt {x^2}}+\frac {1}{3} x \log \left (\frac {5 x}{8-e^4-\log \left (\frac {x^2}{4}\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 26, normalized size = 0.93 \begin {gather*} \frac {1}{3} x \left (5+\log \left (-\frac {5 x}{-8+e^4+\log \left (\frac {x^2}{4}\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 25, normalized size = 0.89 \begin {gather*} \frac {1}{3} \, x \log \left (-\frac {5 \, x}{e^{4} - 2 \, \log \relax (2) + \log \left (x^{2}\right ) - 8}\right ) + \frac {5}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 123, normalized size = 4.39 \begin {gather*} \frac {1}{3} \, x \log \relax (5) - \frac {1}{6} \, x \log \left (4 \, \pi ^{2} \left \lfloor -\frac {1}{2} \, \mathrm {sgn}\relax (x) + 1 \right \rfloor ^{2} + 4 \, \pi ^{2} \left \lfloor -\frac {1}{2} \, \mathrm {sgn}\relax (x) + 1 \right \rfloor \mathrm {sgn}\relax (x) - 4 \, \pi ^{2} \left \lfloor -\frac {1}{2} \, \mathrm {sgn}\relax (x) + 1 \right \rfloor - 2 \, \pi ^{2} \mathrm {sgn}\relax (x) + 2 \, \pi ^{2} - 4 \, e^{4} \log \relax (2) + 4 \, \log \relax (2)^{2} + 2 \, e^{4} \log \left (x^{2}\right ) - 4 \, \log \relax (2) \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + e^{8} - 16 \, e^{4} + 32 \, \log \relax (2) - 16 \, \log \left (x^{2}\right ) + 64\right ) + \frac {1}{3} \, x \log \left ({\left | x \right |}\right ) + \frac {5}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 26, normalized size = 0.93
method | result | size |
norman | \(\frac {5 x}{3}+\frac {x \ln \left (-\frac {5 x}{\ln \left (x^{2}\right )-2 \ln \relax (2)+{\mathrm e}^{4}-8}\right )}{3}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 31, normalized size = 1.11 \begin {gather*} \frac {1}{3} \, x {\left (\log \relax (5) + 5\right )} + \frac {1}{3} \, x \log \relax (x) - \frac {1}{3} \, x \log \left (-e^{4} + 2 \, \log \relax (2) - 2 \, \log \relax (x) + 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {6\,\ln \left (x^2\right )+6\,{\mathrm {e}}^4-12\,\ln \relax (2)+\ln \left (-\frac {5\,x}{\ln \left (x^2\right )+{\mathrm {e}}^4-2\,\ln \relax (2)-8}\right )\,\left (\ln \left (x^2\right )+{\mathrm {e}}^4-2\,\ln \relax (2)-8\right )-50}{3\,\ln \left (x^2\right )+3\,{\mathrm {e}}^4-6\,\ln \relax (2)-24} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 29, normalized size = 1.04 \begin {gather*} \frac {x \log {\left (- \frac {5 x}{\log {\left (x^{2} \right )} - 8 - 2 \log {\relax (2 )} + e^{4}} \right )}}{3} + \frac {5 x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________